
1.  Introduction
Recently, the role of fluids in faults has received great interest for two main reasons: first, by the discov-
ery of a strong causal link between fluid injection and induced seismicity (e.g., Ellsworth, 2013); second, 
by the mounting evidence that slow slip and tremor are generated at high ambient fluid pressures (e.g., 
Bürgmann, 2018). A topic of notable recent interest in studies of induced seismicity is the role of poroe-
lasticity. The slow slip and tremor literature has been significantly influenced by the idea of dilatancy and 
how dilatancy can stabilize fault slip and generate slow slip events. Recently, it has become clear that the 
topics of slow slip and aseismic transients in nature and human-induced seismicity are closely linked. For 
example, Bhattacharya and Viesca (2019) and Viesca and Dublanchet (2019) have shown how spontaneous 
aseismic and slow slip transients arise on faults subject to pore-pressure changes. Torberntsson et al. (2018) 
investigated slow and fast slip in response to fluid injection near a fault in a poroelastic solid. Further, dila-
tancy as a stabilizing mechanism for faults subjected to fluid injection has been studied recently (Ciardo & 
Lecampion, 2019). This study combines both poroelasticity and dilatancy to understand frictional sliding in 
a fully coupled sense, where pore pressure changes of the shear zone influence the bulk and vice versa. In 
this introduction, we start by discussing poroelasticity, then we review the concept of dilatancy, and finally 
we provide an overview of the paper.

Biot's theory of poroelasticity has gained much interest in the study of induced seismicity (Segall & Lu, 2015) 
because fluid injection does not only change pore pressure, but also induces long-ranging stress interactions 
through the coupling of fluid pressure and straining of the porous rock. It is well established that the crust 
behaves as a poroelastic solid (Jónsson et al., 2003) and thus Biot's theory of poroelasticity offers a more 
realistic way to model the earth's crust than simple elasticity.

The role of poroelasticity in the propagation of shear cracks and frictional sliding has been a subject of in-
terest for decades (Dunham & Rice, 2008; Heimisson et al., 2019; Rice & Cleary, 1976; Rice & Simons, 1976; 
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Rudnicki & Koutsibelas, 1991; Rudnicki & Rice, 2006). Perhaps the most intriguing aspect of this problem 
is the role of the pore pressure changes during in-plane, or mode II, sliding. Such sliding induces volumet-
ric stress change on both sides of the fault plane, whereas anti-plane or mode III sliding does not induce 
volumetric stress. During in-plane sliding, the volumetric stress change is compressive on one side and ex-
pansive on the other, with a discontinuity across the plane. This raises an important question of which pore 
pressure should be used to compute the effective normal stress at the frictional interface. Field observations 
of faults suggest that the principal slip zone often lies at the boundary of the damage zone and the fault core 
(F. M. Chester et al., 1993, 2004; Dor et al., 2006). The fault core generally has a much lower permeability 
than the damage zone (Wibberley & Shimamoto, 2003). In models that idealize the fault core as an imper-
meable surface, the relevant pore pressure is often taken to be the value at an infinitesimal distance from 
the shear zone (presented as p+ or p− in Figure 1a but no core depicted) (Dunham & Rice, 2008; Heimisson 
et al., 2019; Rudnicki & Koutsibelas, 1991; Rudnicki & Rice, 2006). Another view was presented by Jha and 
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Figure 1.  We explore various ways in which the deformation of a leaky and pressurized thin shearing layer of thickness 2ϵ and mobility κc, which we consider 
to be the shear zone, may couple to the surrounding poroelastic medium of mobility κ. (a) In-plane shear across the thin layer (indicated by horizontal arrows) 
compresses the bulk material on one side of the shear crack tip and dilates the material on the other. Due to poroelastic coupling, this increases pore pressure 
on the compressive side of the layer and decreases the pore pressure on the dilation side. This case, in which changes from pore pressure arise only from 
slip δx(x, t), was explored by Heimisson et al. (2019). (b) Processes in the thin layer, such as injection or inelastic dilation/compaction, may cause the layer to 
contract or expand (as indicated by vertical arrows), which would cause pore pressure changes in the surrounding medium. For example, expansion of the 
layer (outward facing arrows) would compress the bulk (as indicated by the word “compression”) and raise pore pressure in the bulk. (c) Internal pore pressure 
decrease can occur in the layer, pc(x, t) < 0, perhaps due to inelastic dilation. The flow of pore fluids into the layer from the surrounding medium would cause 
compression adjacent to the layer in the bulk. (d) An example of a situation that combines changes in the pore pressure pc(x, t) in the layer (an increase in this 
case, e.g., due to fluid injection) and bulk effects of shear across the layer. The bulk material adjacent to the fault may undergo both compression and dilation 
(due to slip) and dilation due to pore pressure flow from the fault to the bulk if pressure pc(x, t) exceeds the slip induced pressure changes at the boundary, as 
shown.
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Juanes (2014), in which shear localization occurs preferentially in the fault core where effective normal 
stress is low and thus the relevant pore pressure is where it is highest on either side of the fault core. How-
ever, such a model requires the shear localization zone to be able to change sides dynamically in the core 
depending on how the normal stress evolves. We conclude that significant uncertainty remains regarding 
how slip-induced pore pressure changes interact with the shear zone and/or fault core and dynamically 
change the effective normal stress.

Here, we introduce a somewhat conservative and simplified view and select the average pore pressure 
through the shear zone as the relevant pore pressure for computing the effective normal stress. We allow 
the shear zone to have a different permeability than the host rock. This choice of the relevant pore pressure 
implies that the shear-zone width is initially at steady state and not localizing or delocalizing at any relevant 
frictional or diffusional time scale. As we explain in more detail in the next section, the problem of selecting 
the appropriate pore pressure for shear of a finite-width fault zone in a poroelastic medium remains largely 
unsolved and likely needs explicit modeling.

When sheared and perturbed, for example, due to changes in slip speed, the fault gouge can dilate or com-
pact. The process changes the void volume fraction of the gouge, which is also approximately the porosity 
of the gouge. If the volume change occurs faster than the fluid pressure can equilibrate, then the changes 
in the void volume fraction can dramatically alter the pore pressure. Much like other processes of frictional 
interfaces, the influence of these volume changes on frictional strength has not been derived from first 
principles. The related models and theory have been largely derived and developed based on empirical 
observations (e.g., Lockner & Byerlee,  1994; Marone et al.,  1990; Proctor et al.,  2020). Nevertheless, the 
process can be understood as the result of continuous rearranging and deformation of grains in the gouge 
to accommodate sliding. Based on experimental results (Marone et al., 1990), Segall and Rice (1995) postu-
lated, following the critical state concept in soil mechanics, the existence of a steady-state void volume (or 
porosity) which establishes itself eventually for sliding at steady state with a given constant slip velocity. If 
the slip speed increases or decreases, the granular structure dilates or compacts, respectively. Dilatancy and 
compaction are well established from laboratory frictional experiments spanning three decades (e.g., Lock-
ner & Byerlee, 1994; Marone et al., 1990; Proctor et al., 2020) and have been attributed to strain-rate harden-
ing of visco-plastic asperity contacts in simulations of rough interfaces (Hulikal et al., 2018) as well as the 
dynamics of grains in simulations of granular media without viscoplasticity (Ferdowsi & Rubin, 2020). In 
addition to being induced by shear of granular materials, dilatancy is well known to accompany inelastic 
deformation of brittle rocks (Brace et al., 1966) and can be induced by earthquake nucleation and rupture 
(Lyakhovsky & Ben-Zion, 2020; Templeton & Rice, 2008). Dilatancy accompanying earthquake nucleation 
and rupture will likely happen at a different scale than the granular dilatancy and further increase the com-
plexity of pore-pressure changes in the vicinity of the shear-zone (Viesca et al., 2008). In this paper we will 
not further consider this type of dilatancy.

Segall and Rice (1995) used the laboratory observations of Marone et al. (1990), which documented porosity 
changes in a velocity-stepping experiment under drained conditions, to propose a model for the observed 
porosity changes. They postulated the existence of a steady-state porosity which depends on the slip velocity 
and to which the porosity evolves with slip:

   
  

         


0

0
log ,V V

L V
� (1)

where ϕ0 is the steady-state porosity at the reference slip speed V0, L is the characteristic state evolution 
distance, and γ is an empirical dilatancy coefficient. Segall and Rice (1995) also proposed a related dilatancy 
model in which the porosity depends on the frictional state variable that reflects the evolution of the sliding 
surface(here Equation 33). Near steady-state sliding, the two models behave the same, but some differences 
occur away from the steady state. Recent experiments have suggested that a state-variable formulation may 
be more appropriate (Proctor et al., 2020). We emphasize that even though γ is referred to as a dilatancy 
coefficient, the formulations by Segall and Rice (1995) describe both dilatancy and compaction, or alterna-
tively void volume changes.
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Segall and Rice (1995) then coupled the dilatancy model with a simple single-degree-of-freedom spring slid-
er system and a membrane diffusion model (Rudnicki & Chen, 1988) and carried out a linearized stability 
analysis and numerical simulations. This work was revisited by Segall et al. (2010) who expanded previous 
work on the spring-slider stability analysis and explored a more elaborate homogenous diffusion model. 
However, the main goal of Segall et al. (2010) was to explore dilatancy as a mechanism that can quench 
earthquake instability and generate slow slip. Models using dilatancy for stabilization have found agree-
ment with observed behavior of subduction zone slow-slip events (e.g., Dal Zilio et al., 2020; Liu, 2013; 
Segall et al., 2010). These models go beyond the spring-slider analysis and explore a rate-and-state fault with 
dilatancy coupled to an elastic continuum. However, to date, dilatancy coupled to a poroelastic bulk, as we 
do here, has not been explored.

In this study, we formulate a closed system of equations and carry out a linearized stability analysis of a 
rate-and-state fault with dilatancy coupled to a poroelastic bulk. Further, we allow the shear zone to have 
different diffusivity from the bulk.

The paper starts by discussing the governing equations, boundary conditions, and various effects that may 
arise from frictional sliding and dilatancy or compaction in a poroelastic solid. That section concludes by 
presenting solutions for stresses and pore pressures at the fault in a joint Fourier-Laplace transform domain. 
The following section derives various constitutive relationship for the shear layers and presents the rate-
and-state friction law. The section concludes with the mathematical formulation of the linearized stability 
analysis. Finally, we present the results and derive several simple approximations that characterize stability 
in certain limiting cases. The section concludes by comparing these approximations to the full solutions to 
the characteristic equation obtained through a standard root-finding algorithm.

2.  Problem Statement and Boundary Conditions
We consider two poroelastic half spaces with interface at y = 0 that are uniformly sliding past each other 
with slip rate V0 across the interface which is spatially and temporally uniform. V0 is small enough such 
that inertial effects and wave-mediated stress transfer can be ignored. The interface is at a uniform shear 
stress τ0 and effective normal stress σ0 and thus friction coefficient f0 = τ0/σ0. The pore pressure p is also at 
equilibrium and spatially uniform. At time t = 0, this steady-state configuration is perturbed by introducing 
a Fourier mode slip perturbation δx = est+kx, with the total slip for t > 0 being V0t + δx. This non-uniform (or 
heterogeneous) slip excites spatial variation in slip speed, shear stress, pore-pressure, and normal stress.

The displacements ui and pressure changes p relative to an equilibrium pressure state are governed four 
coupled partial differential equations. These are (e.g., Detournay & Cheng, 1995)




 
, , ,1 2i kk k ki i
GGu u p� (2)

and

   , , ,
1 ,t kk k ktp p u
M

� (3)

where ui are displacements and we have assumed that body forces are negligible. The equations are present-
ed in the index notation. Subscript “, t” indicates the partial derivative with respect to time, subscript “, i” 
indicates the partial derivative with respect to the spatial coordinate i. Index i = 1 refers to the x axis, which 
lies in the fault plane. Index i = 2 refers to the y axis that is, perpendicular to the fault plane. Finally, index 
i = 3 corresponds to the z axis, but all fields will be assumed invariant in that direction since we will con-
duct a plane-strain analysis. Repeated indices such as “kk” represent sum over all spatial indices. Finally, 
the material parameters are denoted as follows, G: shear modulus, ν: drained Poisson's ratio, α: Biot-Willis 
parameter, M: Biot modulus. Finally, κ is the mobility, which is defined as the ratio between the permeabil-
ity and fluid viscosity. Later we shall replace some of these parameters with other poroelastic parameters 
for more compact and intuitive expressions. In Appendix A, we provide expressions for converting between 
poroelastic parameters and Table A1 with important fixed parameters.
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Under the assumption of the plane strain, the four coupled equations above can be decoupled and written 
out in terms of displacement functions  and  derived by Verruijt (1971) and McNamee and Gibson (1960), 
but see also Detournay and Cheng  (1995) for a more pedagogical description. We follow the procedure 
outlined in the appendix of Heimisson et al. (2019), but solve the system of equations for a more general set 
of boundary conditions:

 


 

0
lim ,x x x

y
u u� (4)

 


 

0
lim ,y y y

y
u u� (5)




lim 0,iy

u� (6)




lim 0,

y
p� (7)

  


 

0
lim 0,xy xy

y
� (8)

  


 

0
lim 0,yy yy

y
� (9)

where + and − superscripts refer to the y > 0 and y < 0 half-spaces respectively, and  
xy,  

xy,  
yy, and  

yy 
refer to the shear and normal perturbations in stress on top of the initial uniform values. We note that 
boundary conditions are applied at y → 0±, which contains a layer with thickness 2ϵ as shown in Figure 1. 
We assume that the layer is “thin” and can be treated through the boundary conditions at y → 0±. In other 
words, we require that ϵ ≪ λmin, where λmin is the smallest length-scale over which any physical fields vary 
along the x axis. This can be regarded as a boundary layer approach where the outer solution treats the shear 
zone as a mathematical zero-thickness interface, but the inner solution treats it as having a finite thickness.

The first two boundary conditions describe the deformation of the thin layer by arbitrary shearing, contrac-
tion, or expansion of the layer. The displacement discontinuities δx and δy across the layer are presented as 
occurring at the boundaries (Figures 1a and 1b). However, as long as the layer is thin, these displacements 
could be internal to the layer. For example, δx(x, t) could both represent an infinitesimally thin slip surface 
within the layer (e.g., Heimisson et al., 2019), or it could represent a distributed shear throughout the layer.

The third and fourth boundary conditions guarantee that the displacements and pressure changes vanish at 
y → ±∞. The fifth and sixth boundary conditions enforce that shear and normal stress are continuous across 
the layer. This condition also makes sense only for a thin layer.

Finally, we formulate a boundary condition for the pore pressure at the layer boundary. First, we recognize 
that this layer may generate pore pressure changes through several processes that may be slip-dependent, 
such as compaction or dilation (Segall & Rice, 1995), chemical such as dehydration reactions, or simply due 
to applied perturbations from, for example, injection into the shear layer. Second, we recognize that such 
interface layers are generally produced by frictional wear, and such alterations may dramatically change 
the permeability (e.g.,Behnsen & Faulkner, 2011; Caine et al., 1996; Wibberley & Shimamoto, 2003). The 
difference in pore pressure at the boundary relative to the internal pore pressure determines the direction 
of the fluid flux. Taking pc(x, t) to be the pore pressure in the center of the layer (Figures 1c and 1d), we can 
approximate the pressure gradient on the ± sides of the layer as (p±− pc)/ϵ. We use Darcy's law to provide 
a flux boundary condition that equates the fluid flux out of each side of the layer to the flux into the bulk:




 




 

0

( ) ,c c

y

dp p p
dy � (10)
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where κc is the mobility within the shear layer. Equation 10 generalizes the leaky plane boundary condition 
of Song and Rudnicki (2017) and reduces to it if pc = 0. Note that Equation 10 can result in an asymmetric 
flux out of the layer.

If we assume that Equation 10 holds rigorously, then the pore pressure in the layer can be written as follows:





    

     

( ) ( ) if 0

( ) ( ) if 0.

c c

c c

yp y p p p y

yp y p p p y







� (11)

2.1.  Solutions to Slip and Pore Pressure Changes in Fourier-Laplace Domain: In-Plane Shear

Let us define the joint Fourier-Laplace transform:

 
x x

ikx st
s k t x e dxdt( , ) ( , ) ,  



  

0
� (12)

applied here to the slip δx(x, t), or displacement discontinuity across the layer in the x direction, where the 
bar symbol represents the Laplace transform in time and the hat represents the Fourier transform along 
the x spatial axis. Some symbols may not carry the hat symbol if they are explicitly written out in terms of 
wavenumber k.

Following the procedure outlined by Heimisson et  al.  (2019), we derive solutions for shear stress, pore 
pressure, and normal stress change at the slip surface (y → 0±) in the Fourier-Laplace domain. In the Lap-

lace-Fourier transform domain, we obtain the following relationships between change in shear stress , 

pore pressure change on either side of the layer 


p̂ , and change in total normal stress ̂ yy in terms of ̂ x, ̂ y,  
and ˆ cp :

 





  


G k
H s k

x

u

| |

( )
( , )

2 1
1

� (13)

and

    
 

  
   

  
 2 2 2

1 | | 1( , ) ( , ) 1 ( , ),
3 1 1

ˆ
3

ˆ
ˆ

1

ˆ x yu u
c

u u

ikGB k GBp H s k p H s k H s k


� (14)

and


 

  
  1 1

ˆ
ˆ ,3 | |( ( , ) 1) ( , )

2 (1 ) 1 2(1 )
ˆ y

yy c
u u

G kp H s k H s k
B




� (15)

where

 

       

   

2
2

1 2

2( ) 1( , ) 1 1 / 1 ,
1 1 /

u ckH s k s ck
s s ck




� (16)

and

 


 

2

2 2

1 / 1( , ) .
1 /

s ckH s k
s ck 

� (17)

  is a dimensionless group that characterizes the importance of flux across the fault:
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



1 .

| |
c

k



� (18)

2.2.  Solutions to Slip and Pore Pressure Changes in Fourier-Laplace Domain: Anti-Plane Shear

Having solved the more complex in-plane shear problem, we may deduce the simpler anti-plane shear case. 
We note:

1.	 �Any term of Equations 13–15 that is, linear in ˆ cp  and ̂ y must be unchanged from the in-plane case, since 
these terms do not depend on fault-parallel slip

2.	 �Any term of Equations 13–15 that is, linear in ̂ x must be represented by the corresponding elastic an-
ti-plane slip relationship, since anti-plane slip induces no volumetric stress and thus does not induce 
instantaneous or transient pore pressure response

We thus arrive at the corresponding anti-plane shear relationships. We have:

  
  

G k x| |
,

2
� (19)

as was identified by Rice and Ruina (1983); Rice et al. (2001). Further, we find:

   


 
   

 2 2

ˆ
ˆ )| | 1( , ) 1 ( ,

1 3
ˆ

1
y u

c
u

k GBp p H s k H s k


� (20)

and


 

  
  1 1

ˆ
ˆ ,3 | |( ( , ) 1) ( , )

2 (1 ) 1 2(1 )
ˆ y

yy c
u u

G kp H s k H s k
B




� (21)

where changes in normal stress σyy are identical to the in-plane case. It may seem surprising that the rela-
tionships above for anti-plane shear depend on Poisson's ratios (all except [Equation 19], the slip to shear 
stress relationship). However, the terms with Poisson's ratio are not stress components that arise from slid-
ing, but rather ones that result from pressurization of the layer and dilation/compaction of the layer. The 
terms that depend on δy represent mode I contribution of the interface deformation and terms with pc rep-
resent contributions from the pressure change at the interface. These contributions do not depend on the 
primary mode of sliding and are thus the same for the in-plane and anti-plane cases.

3.  Constitutive Relations for a Thin Layer
Here we describe the center pore pressure change pc and the layer-perpendicular displacements δy in terms 
of the slip δx.

3.1.  Frictional Constitutive Law

First, we consider the force balance within the layer:




   



( , )
( , , ) for ,

( , ) ( , , )

x t
f x y t y

x t p x y t
 � (22)

where τ and σ are the shear stress and the effective normal stress in absence of pore pressure perturbations, 
respectively. Thus σ = σ0 + σyy, where σ0 is the total effective normal stress at equilibrium, when there are no 
perturbations present in stresses or pore-pressure. The effective normal stress at equilibrium (σ0) is thus the 
difference between the total ambient equilibrium normal stress and the ambient equilibrium pore-pressure, 
but these two scalars are always combined in σ0. We emphasize that perturbations in pore-pressure are not 
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written as a part of σ, while the ambient background pore-pressure is included in σ as a part of σ0. Similarly 
τ = τ0 + τ′ where τ0 is the absolute equilibrium shear stress and τ′ represents any perturbations in shear 
stress from slip, pore-pressure or from external loading. The subscript 0 refers to a later assumption where 
we consider the system to be in equilibrium at t = 0 (see Section 3.4).

We assume that τ and σ are constant with respect to y in the layer because the layer is thin. This assumption 
also implies that inertia can be ignored in the layer (Rice et al., 2014). f describes the frictional resistance at 
each point in the layer and p is the pore pressure perturbation assumed to follow the linear pressure distri-
bution in Equation 11. In order to obtain the approximate frictional resistance of the entire layer, we average 
with respect to y using Equation 11:

 
 



 
 

 

    
               

 

( ) log ( )log
,

2( )( )

c c
c c

c c

p pp p p p
p p

f
p p p p

� (23)

where now all fields depend on x and t (not written explicitly for compactness), but not on y within the layer.

We assume that the layer-averaged fictional resistance is described by the rate-and-state friction law (e.g., 
Dieterich, 1979; Marone, 1998; Ruina, 1983):

     








 









f f x y t dy f a

V

V
b

V

L

1

2
0

0

0

 


( , , ) log log ,


� (24)

where a is a constitutive parameter that weights the rate dependence of friction under constant state (also 
called the direct effect) and b is a constitutive parameter that weights the state dependence of friction at 
constant slip rate. V thus represents the slip rate of one side of the shear zone layer relative to the other, 
or in other words the integrated shear strain rate across the layer. L is the characteristics slip distance over 
which the state θ evolves. A mathematical definition of θ is offered later in the section where we introduce 
the state evolution law. In order to maintain consistency with the linearized stability analysis, discussed and 
presented in Section 3.4, we select the nominal coefficient of friction f0 = τ0/σ0 and the nominal slip speed as 
V0 as the values at time t = 0, and the nominal state θ0 = L/V0 as the steady-state value at time t = 0.

Equation 22 is non-linear, both in terms of strength dependence on pore-pressure and the coefficient of fric-
tion in Equation 24. The linearization of the friction coefficient is addressed in Section 3.4. Here, we present 
the linearization with respect to small changes in pore pressure, to provide a more intuitive expression than 
Equation 23. The linearization renders:

    
    

                  
 0

0 0 0
0

( ) ( ( ) ( ) ) log log ,yy
V Vt t p t f a b
V L

� (25)

where the relevant average pore pressure 〈p〉 in the layer can be written as:

     










 

p p y dy p
p p

c

1

2

1

2 2 


( ) .� (26)

Hence we conclude that, given our assumptions, we can simply use the average pressure in the layer as the 
relevant pore pressure in computing the effective normal stress in computing the shear resistance. As a re-
minder, our assumptions include the linear pore pressure distribution within the shear layer, the averaging 
of frictional strength described earlier in this section, and considering changes in pore pressure that are 
small compared to σ.

We note that the average pore pressure in the (distributed) shearing layer that we use in this study may not 
be a universally valid approach. In the presence of a thin low-permeability structure surrounding or next 
to the shearing layer, as typical for a fault core, the relevant pore pressure may be different (Heimisson 
et al., 2019; Jha & Juanes, 2014). Such structures are expected to be significant in well-developed fault zones 
(Caine et al., 1996). Our view could be most appropriate for less developed faults and laboratory settings 
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where the shear zone represents simulated gouge, or scenarios where the fault core may not generate a sig-
nificant permeability contrast or flow barrier with the shear zone and/or the surrounding rock.

Furthermore, the localization of slip in fluid-saturated thin granular layers of distributed shear is not fully 
understood at present and may require explicit modeling. If an ongoing localization process occurs, we also 
expect the relevant pore pressure to evolve in a complex way that requires explicit modeling. For example, 
studies indicate that, as instability develops, a localization process occurs and a distributed shear layer may 
collapse to a much narrower slip “surface” with the width of the order of several microns (Platt et al., 2014; 
Rice et al., 2014). We expect that the relevant effective normal stress for shear resistance would then be 
determined by the pore pressure over that localized shear surface.

Equation 25 requires an equation for the evolution of the state variable θ, for example, the aging law:

    


   1 LDd V
dt L b

� (27)

or the slip law (Ruina, 1983) These state evolution laws are identical when linearized around steady state 
slip and our analysis encompasses both (see Section 3.4). Here, we have included the correction of Linker 
and Dieterich (1992) for the dependence of state on normal stress. This dependence is proportional to the 
empirical Linker and Dieterich (1992) constant αLD, which is typically between 0 and 0.5, but always less 
than f0.

3.2.  Constitutive Equations for Pore Pressure in the Layer

Now we derive an evolution equation for the average pore pressure in the layer. Following Segall and 
Rice (1995), the fluid mass conservation in the layer requires:

 
 

 
0,m q

t y� (28)

where m is the fluid mass content and q is the fluid mass flux. This expression considers the fluid mass 
flux along the layer (along x) to be negligible, which is valid if flux along y dominates over flux along x. 
One obvious example is if the mobility or permeability in y direction is much larger than in the x direction. 
However, we expect this to hold more generally since the flux along y is proportional to 1/ϵ but the flux 
along x is proportional to k and ϵk ≪ 1 ⇒ k ≪ 1/ϵ. Nevertheless, this also depends on the relation between 
the permeability of the host rock and permeability of the shear layer. If the host-rock is impermeable (or 
has low permeability compared to the one along the shear layer) then the flux along x cannot be ignored. 
The assumption that shear zone flux only occurs in fault normal direction is commonly applied in studies 
of thermal pressurization (e.g., Bizzarri & Cocco, 2006; Rice, 2006).

We write m = ρfn, where ρf is the fluid density and n = ne + np is the sum of the elastic and plastic void 
volumes. Taking the time derivative of m yields

   .f fm n n� (29)

We now propose linearized relationships for the elastic void compressibility       ( )e p
n nn p  and 

      ( )p
f fo f fp , where  p

f  and  p
n  are fluid and elastic void compressibilities, respectively. Super-

script p on  p
f  or  p

n  refers to “pressure” and specifies that this compressibility is defined under isotropic 
volumetric stress or pressure. Superscript σ on  f  or n  refers to normal stress, specifically here σyy, and 
specifies that this compressibility is defined under uniaxial compressive or tensile stress. For example, for 
a linear elastic solid, βp = 1/K, where K is the bulk modulus. However βσ = (1 + ν)/(3 K(1 − ν)), which is 
the so called P-wave modulus. For ν = 0.25, we find βσ = 5βp/9. We assume that σ > 0 reflects increased 
compression, or the compression positive convention. Thus increased normal stress reduces the void-vol-
ume and decreases the fluid mass in each control volume. We refer the reader to Cocco and Rice (2002) 
for the detailed discussion of isotropic and uniaxial compressibilities in a poroelastic solid. The reference 
compressibilities are defined at the reference void fraction ϕ, which we interpret as porosity, and reference 
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fluid density ρfo. Further, we assume that the plastic void fraction is equal to the plastic porosity: npl = ϕpl, 
where the superscript “pl” refers to “plastic.” Thus, we arrive at:

                    ( ) ( / ).p p pl
fo f f fo n nm p p� (30)

Combining Equations 28 and 30 and integrating over the shear layer yields:

                       
2 ( ) ( ) / 0,p p pl

fo f n f np q q� (31)

Inserting the expressions for the fluid mass flux given a linear pressure distribution (Equations 10 and 11) 
provides:

    
       

   
       

  




2
1( ( ) ).
2( ) ( )

pl
f n c

cp p p p p p
f n f n f n

p p p p


� (32)

We have thus arrived at an evolution equation that relates normal stress (uniform over the layer) with 
average pore pressure and dilatancy, where the source of pore pressure stems from inelastic changes in 
porosity ϕpl. Segall and Rice (1995) and Segall et al. (2010) proposed that the inelastic porosity is a function 
of the state ϕpl(θ). This idea has been further observationally supported by Proctor et al. (2020). We assume 
that the state variable description of the plastic porosity changes reflects the average porosity change in the 
shear layer:

  
 

       
 

0
0 log ,pl pl V

L
� (33)

where γ is a dilatancy coefficient usually taken as γ ∼ 10−4. The rate of change of the inelastic porosity is 
then given by:

 


    .pl� (34)

It may be useful to summarize, at this stage, the treatment of porosity in the study. If the fault is loaded at 
rate V0 and is also slipping at steady state everywhere at V0, which is a fundamental assumption of the sta-
bility analysis, then the porosity is simply ϕ that is, the reference porosity. This means that here the initial 
value of the plastic porosity in Equation 33 is   0 0pl . The total porosity is then          ( )p pl

n np ,  
where the second term is the elastic changes in porosity. We note that often Equation 33 is written to de-
scribe the sum of reference porosity plus plastic porosity (e.g., Segall & Rice, 1995; Segall et al., 2010), which 
can be obtained by replacing    0 0

pl . However, here we have for completeness introduced a separate 
value for the initial plastic porosity since in general the reference porosity may not be defined as the intial 
porosity, which may include a plastic porosity change.

3.3.  Fault-Normal Displacements of the Shear Layer

We now seek a relationship that describes fault normal expansion or contraction of a thin gouge layer 
δy = uy(y = ϵ) − uy(y = −ϵ). We start by stating the conservation of gouge mass, mg, per unit volume:

    
  

    
  

 (1 ) (1 ) 0,g
g y g x

m
n u n u

t y x
� (35)

where ρg is the gouge density; note that this is not the bulk density but the density of non-porous and intact 
gouge mass, that is, the solid constituent of the gouge with all pores removed. Deformation ux and uy here 
refer to the internal deformation field of the gouge. Unlike the deformation of the bulk, in the gouge ux 
and uy are representing large strain and non-elastic deformation. Here we have included the ∂/∂x term for 
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completeness, but we will neglect assuming symmetry across the shear zone, as is discussed later. Now mg 
= (1 − n)ρg and thus:

       (1 ) .g g gm n n� (36)

following the same arguments as in the previous section, we arrive at a linearized relationship:

                     ( / ) (1 ) ( ),p pl p
g go n n go g gm p p� (37)

where now βg is the compressibility of the intact and non-porous gouge material and again superscript p and 
σ refer to the isotropic and uniaxial compressibilities, respectively.

Inserting Equation 37 into Equation 35 and integrating over the shear layer provides a relationship between 
dilatancy, pressure, and normal stress changes and gouge fault normal displacements:

   
    

   


  
                       

  1
2 2 .

1 1
1

n g pl
p p

y n g
p p
n g

p � (38)

If we assume that, at time t = 0, the fault is in a pressure equilibrium and sliding at steady state, the equation 
can be integrated trivially:

   
    

   


  
                       

1
2 2 .

1 1
1

n g pl
p p

y n g
p p
n g

p � (39)

Where we have assumed that the average of xu  with respect to y over the layer thickness is zero such that the 
x flux term in Equation 35 is essentially neglected. This may be justified by assuming that internal deforma-
tion of the shear layer with respect to y = 0 is anti-symmetric. This is likely if one side of the fault slips the 
same amount as the other, which is usually the case for symmetric geometries. We entrust the analysis of 
what might occur if such symmetry is not present to future work.

3.4.  Linearized Stability Analysis

We now seek to analyze the stability of the steady shear (or sliding) in the layer to small perturbations. If 
the perturbation is small, the friction law and other constitutive relationship can be linearized around the 
initial steady-state configuration. We seek a solution to the linearized form (Rice et al., 2001) of the friction 
law and state evolution (Equations 25 and 27, respectively) as well as the linearized equation describing the 
time-evolution of the layer pressure pc (Equation 32). We carry out the stability analysis in the joint Lap-
lace-Fourier transform domain (Equation 12), which is equivalent to seeking a solution to the linearized 
system of equation for a slip perturbation δx = est+ikx, which is applied at t = 0 (e.g., Rice et al., 2001).

The goal of the linearized stability analysis is to obtain the characteristic equation where we can solve for s 
as a function of k = 2π/λ, where λ is wavelength, and other parameters. If the solution has ( ( )) 0s kR , then 
the steady-state sliding is linearly unstable to the perturbations with corresponding wavenumbers, whereas 
if ( ( )) 0s kR , the sliding is stable and the perturbations decay exponentially. If ( ( )) 0s kR  perturbations 
neither grow nor decay; in this case we refer to k as the critical wavenumber kcr, which thus defines a length-
scale at which development of instabilities is possible. This important wavenumber is discussed in more 
detail in Section 4.

We note that the sign of k when it refers to a Fourier-mode perturbation in slip applied to the fault simply 
reflects the direction of the slip wave as it travels along the interface. The symmetry of the problem indicates 
that there is no inherent dependence on the wave directionality. Indeed, the term with the opposite sign 
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in p+ and p− (Equation 14), which implies the directionality dependence (as was discussed by Heimisson 
et al. (2019)), cancels when computing 〈p〉.

Stability analysis of frictional sliding is more commonly done, and perhaps more widely known, in the 
context of simpler system where this bulk response is neglected. That is, a single degree-of-freedom system 
commonly referred to as the spring-block slider (e.g., Ruina, 1983; Segall & Rice, 1995; Segall et al., 2010). In 
this case, the goal is to derive a critical stiffness of the spring, defined as stress drop per unit slip. The spring 
stiffness is also commonly represented by the symbol k, but here we shall denote it as  and thus the criti-
cal spring stiffness as cr . If  cr   then instabilities do not develop at steady-state sliding, but if  cr   
instabilities can be generated from small perturbations at steady state. In applying the spring-slider analysis 
to fault stability, which are not uniform in space, the argument is made that the spring stiffness represents a 
crack stiffness in an elastic medium and the spring stiffness can be replaced with the scaling  /cr crG L , 
with Lcr being a critical crack length, or half crack length. For quasi-static elastic medium this substitution 
provides the correct scaling such that kcr = 2π/λcr ∼ 1/Lcr with the only difference being an order 1 constant 
factor (Rice et al., 2001). However, if transient bulk response, which depends on the wavenumber, plays a 
role in the stability, such as in an elastodynamic solid (Rice et al., 2001), or poroelasticity (see Heimisson 
et al. (2019) and this study) this simple correspondence between spring-slider and continuum bulk analysis 
does not hold anymore in a general sense.

The linearized form of Equations 25 and 27 around steady state sliding can be expressed (Rice et al., 2001):

       
 
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0 0

d d d ( )( ) ( ) ( ) ( ) ( ) ( ) ,
d d dLD yy yy

a V V a bt f p t f p V V
t V t t L V

� (40)

Transforming in the Laplace-Fourier domain renders (Heimisson et al., 2019):
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Expressions for  and ̂ yy are provided in Equations 13 and 15, but we note the introduction of the minus 
sign in front of ̂ yy due to a change in sign convention since the equation describing friction considers ten-
sile stress to be negative. As previously discussed, the value chosen for the relevant pore pressure within the 
layer is open to some interpretation but here we take the average value as in Equation 26.

Now we seek to eliminate the eigenfunction ̂ x from the equation above and retrieve the characteristic 

equation. However, we first need to derive linear relationships such that  ˆˆ xcp  and  ˆ ˆy x.

Let 〈ϕpl〉 = ϕ0 + Δϕp, θ = L/V0 + Δθ, and V = V0 + ΔV where Δ indicates a small perturbation around the 
steady state value, with the latter being the first term on the right hand side of each equation. Inserting into 
Equation 34 and carrying out a linearization around steady state provides the following expression for  pl 
and the corresponding Laplace transform

                  0 0( ) .
pl

pl plV V s
L L

� (42)

From Segall and Rice (1995), we have a linearized state evolution law (see also Ruina, 1983):

  
     0

0

V V
L V� (43)

and the Laplace transform renders

  
 

 
 

0
0

.xs
VV s
L

� (44)
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Thus the linear relationship between plastic changes in porosity (or alternatively inelastic dilatancy or com-
paction) is

  
 

 
 

0
,

pl xs
L Vs

L
� (45)

where we interpret the relationship as the average representing the plastic changes in porosity within the 
shear zone.

Applying the Laplace transform to Equation 32 and substituting Equation 45 yields
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VL ss
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Further substitution of Equation 14 then provides one linear relationship between cp ,  y, and  x. However, 
another constitutive relationship is needed to eliminate both cp  and  y. This relationship comes from Equa-
tion 39 by taking the Laplace transform and substituting Equation 45:
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Then through substitution of Equations 14 and 15 for the in-plane case, or Equations 20 and 21 for the 
anti-plane case, we obtain another linear relationship between cp ,  y, and  x.

This means that the linear relationship between stress or pore pressure and cp ,  y, and  x in Equations 13–15 
for in-plane, or Equations 19–21 for anti-plane can all be expressed only in terms of  x. Then substitutions of 
those expressions into the characteristic Equation 41 allows for elimination of  x and provides finally two 
equations that can be solved numerically for s(k). The two equations are obtained by requiring that both 
the real part and imaginary part of the characteristic equation are zero (e.g., Heimisson et al., 2019; Rice 
et al., 2001). We do not present here the full characteristic equation due to the complexity of the expression 
but provide a MATLAB code where it is implemented and can be solved (see Acknowledgments). Numer-
ical exploration of the characteristic equation would suggest no more than two roots (within numerical 
precision). These roots have the same real part and imaginary part except the latter changing sign. However, 
due to the presence of half-integer terms and the sheer size of the expression, determining analytically the 
number of roots has not been feasible. In the next section, we discuss some approximation and implications 
as well as show numerical solutions.

4.  Time Scales and Approximations to the Critical Wavenumber
Let us present the results on the stability of steady-state sliding of a dilating shear layer embedded into and 
coupled with a poroelastic solid. Much of this discussion focuses either on approximate expressions for 
the critical wavenumber, or solving the characteristic equation numerically using a standard root finding 
algorithm.

The critical wavenumber kcr = 2π/λcr represents the wavenumber at the boundary between stable and un-
stable sliding. The critical wavenumber marks the point of a Hopf bifurcation where Re(s(kcr))  =  0 but 
Im(s(kcr)) ≠ 0 in general. A small-magnitude perturbation in slip with a larger wavenumber (k > kcr), or 
alternatively a smaller wavelength, would decay exponentially. However, a perturbation in slip of a smaller 
wavenumber than kcr (k < kcr), or alternatively larger wavelength, would grow and may nucleate a seismic 
event. A Fourier-mode perturbation with exactly k = kcr would simply oscillate with a fixed frequency and 
neither grow nor decay.
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In the following sections, we present approximations to the critical wavenumber in certain limiting cases. 
To obtain these approximate expressions, we carry out following steps.

1.	 �We introduce s′ and k′, which are non-dimensional versions of s and k and are obtained by substitution 
s  =  s′V0/L and  anti

crk k k , where  02 ( ) / ( )anti
crk b a GL  is the critical wavenumber for quasi-static, 

anti-plane sliding between two elastic solids (Rice et al., 2001). This quantity is of the same order as the 
corresponding in-plane sliding wavenumber (Rice et al., 2001) but does not depend on Poisson's ratio, 
which can be either drained or undrained. This non-dimensionalization implies that s′ and k′ are gener-
ally of order unity near critical stability.

2.	 �We introduce a non-dimensional half-thickness ϵ′ of the shear layer, by substitution  / anti
crk  . Since a 

fundamental assumption of the analysis is that kϵ ≪ 1, we may use ϵ′ as a small parameter in which the 
characteristic equation can be expanded.

3.	 �We carry out a Taylor expansion of both the real and imaginary parts of the characteristic equation. We 
retain terms up to first order in ϵ′. We also explore the leading-order terms that are proportional to 1/κc 
if appropriate. These terms are retained because they become large if κc is small and thus may provide 
insight into transitional regimes at low shear-zone mobility.

4.1.  Characteristic Time Scales

In order to obtain insight into the role of diffusion in the stability of the frictional interface, we start by 
analyzing the time scales involved as perturbations grow around steady state sliding. The problem has three 
characteristic time scales. First, a frictional nucleation time scale:


0

,nu
Lt
V� (48)

which is a natural time-scale for the evolution of the frictional state and scales how fast instabilities nucle-
ate or decay back to steady state sliding in a stable regime. Further, it offers a first-order approximation to 
the instability time of sources above steady state in the spring-slider analysis (Heimisson & Segall, 2018).

Second, we investigate the time scale of diffusion into the bulk:

 2
1 .bt

ck
� (49)

Lastly, a time scale of flux in the shear layer:


 

  
2 2 2

2 2 2 2 2
1 ,f

c c

ct
ck c M

 
� (50)

where the last equality is obtained by the substitution κ = c/M, which is the relationship between the mo-
bility and hydraulic diffusivity in a linear poroelastic bulk.

From these time scales, we identify two non-dimensional time scales. First,


 

2 2

2
0

,nu c
f

f

t LM
t V c




� (51)

where f  represents the ratio of the time scale of nucleation to the time scale of flux through the shear layer. 
If f  is small compared to unity, then nucleation occurs much faster than the fluid flux in the shear layer. 
Since such flux is needed to minimize the effects of dilational stabilization, we expect that a small value of 

f  corresponds to the limit where dilatancy is important. On the other hand, if f  is large, then nucleation 
occurs over a longer time than the flux and dilatancy can be ignored.
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The second non-dimensional time scale is tnu/tb = Lck2/V0, however, we substitute  anti
crk k  since it is not 

convenient to express the non-dimensional time scale explicitly in terms of k, which is treated as a variable 
in the characteristic equation. We thus obtain a non-dimensional time scale independent of k:

 


2 2
0

2
0

4 ( ) ,b
c b a

V G L
� (52)

which is valid as long as the critical wavenumber is of the same order as anti
crk . When b  is small compared to 

unity we may effectively ignore the fluid diffusion in the bulk on the time scale of nucleation and we expect 
undrained bulk response. However, if b  is large then fluid in the bulk can diffuse at the time scale of nu-
cleation and the bulk response is drained. For  1b , we expect transient poroelastic response of the bulk.

The two non-dimensional time scales here share several parameters, notably the hydraulic diffusivity of 
the host rock c. Moving forward, we shall investigate different limits of stability by systematically changing 
either f  or b  while keeping the other parameter constant.

4.2.  Limit of κc → 0

Let us analyze a simple limit where the permeability or mobility of the shear layer is zero, in addition to 
assuming that the bulk response is either drained or undrained. In this limit, as ϵ → 0, one can show, for 
in-plane sliding, that:




 
    

 0

0
1 ( ) ,

( )
un

cr cr
fk k
b a

 � (53)

where

   
   02 ( )(1 )(1 )un anti u

cr cr u
b ak k

GL
� (54)

is the critical wavenumber for the corresponding elastic problem of in-plane sliding assuming an undrained 
Poisson's ratio. We present kcr within an absolute value to reflect that it can be both positive and negative 
depending on the directionality of the slip wave as was previously discussed. This also implies that, if the 
right hand side of the equation is negative, then clearly the critical wavenumber does not exist.

Similarly, for drained bulk response




 
    

 0

0
1 ( ) ,

( )
d

cr cr
fk k
b a

 � (55)

where

   
   02 ( )(1 )(1 )d anti

cr cr
b ak k

GL
� (56)

is similarly the drained elastic critical wavenumber of in-plane sliding.

For anti-plane sliding, there is no difference in the bulk response at drained or undrained condition (to 
zeroth order in ϵ′) and the corresponding limit is simply




 
    

 0

0
1 ( ) ,

( )
anti

cr cr
fk k
b a

 � (57)

We thus observe that the dilatancy has a primary effect on the critical wavenumber in this limit. Equa-
tions 53 and 57 are, in a sense, equivalent to the undrained limit identified by Segall and Rice (1995) with a 
single-degree-of-freedom spring-slider analysis, except Equations 53 and 57 are for a deformable poroelastic 
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bulk. However, Equation 55 does not have a direct correspondence in the Segall and Rice (1995) analysis. 
This is because the Segall and Rice (1995) analysis had effectively only one diffusion time controlled by 
the hydraulic diffusivity c of the bulk. Here, we consider that the time scale of flux within the shear layer 
may be very different (see Section 4.1). Thus this analysis adds to the findings of Segall and Rice (1995) by 
suggesting that, as long as the shear layer is sufficiently impermeable, then dilatancy stabilization can occur 
even in a highly diffusive surroundings.

The first-order correction for Equations 53 and 55 can be written out explicitly as:

             

    

       


  
0 0 0

2 3
0

2 ( ( ) ( ))( ( ))( )
( ) .

( ) ( )(1 )

p p p p p p p
f n g f g f f n n

p p
f n

f f b a

L b a
  � (58)

The corresponding anti-plane ( )   correction term in Equation  57 is obtained by multiplying the in-
plane correction (Equation 58) by 1/(1 − ν) and 1/(1 − νu) for the drained and undrained bulk responses, 
respectively.

This correction arises due to the shear-zone expansion from non-elastic porosity changes from dilatancy 
and elastic porosity changes due to pore pressure change and normal stress changes. It is likely that the 
sign of this term is mostly governed by the sign of            0 0 0 0( ) ( ) ( )p p

f nf b a f b a . Thus, if 
f0γ/((b − a)σ0β) > 1, this term would act to destabilize. However, f0γ/((b − a)σ0β) = 1 is the condition when 
Equations 53, 55, and 57 suggest no unstable wavenumbers, since kc = 0 to the leading order. We thus con-
clude that, for sets of parameters where the interface is conditionally unstable due to small perturbations 
around steady state, fault-perpendicular displacements act to further stabilize sliding as κc → 0.

4.3.  Undrained Bulk Response (c → 0)

In this particular limit, we neglect any diffusion of fluids in the bulk. However, we note that the shearing 
layer itself can equilibrate pore pressure, in other words, κc > 0. In this particular case, the characteristic 
equation is greatly simplified because 1 1H  and 2 1H  by design (Heimisson et al., 2019). However the 
full solution to the system is still too complicated to provide any useful insight if written out as an equation. 
We thus approximate the characteristic equation following the procedure outlined before. We obtain the 
following expression:


 1 ,

1
un

cr crk k


� (59)

where  is a non-dimensional and non-negative parameter:

 


 



02 (3 2 (1 ))

3 (1 )
uf B

L
 � (60)

The corresponding anti-plane limit is obtained by substitution of un anti
cr crk k  and  / (1 )u  .

In the limit ϵ → 0, we clearly see that  un
cr crk k  as is expected. It is notable that  describes stabilization due 

to expansion of the gouge in response to inelastic dilatancy, which causes fault perpendicular displace-
ments. The bracket 3 − 2B(1 + νu) ≥ 0, since at most B = 1 and νu = 0.5. This bracket characterizes the 
competition between two processes: increased compression of the shear layer due to expansion against the 
poroelastic host rock and increased pore pressure in the shear layer due to the compression of the host rock. 
If B = 1, and the undrained Poisson's ratio of the host rock implies that it is nearly incompressible, the two 
effects cancel completely. We conclude that the influence of the shear layer expansion in the undrained bulk 
limit can be neglected as long as

 


 



02 (3 2 (1 )) 1.

3 (1 )
uf B

L
 � (61)

It is worth noting that higher order terms may become significant in the limit of κc → 0. But, as we recog-
nized in the previous section, the limit of κc = 0 gives rise to dilatancy stabilization of the zeroth order with 
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respect to ϵ. By retaining the leading-order terms with dependence on 1/κc, we find that, in order for Equa-
tion 60 to be a valid approximation, one needs to have:

 
 


2

4 0 0
2 2

0
1.

4 c

V f
L a

� (62)

If the inequality is violated, we expect the onset of stabilization through dilatancy in the sense identified by 
Segall and Rice (1995).

4.4.  Drained Bulk Response (c → ∞)

In this limit, we assume that the bulk is highly diffusive on any time scale relevant to dilatancy and for the 
onset of instability. However, we assume that the shear layer pressure equilibrates on a finite time scale, 
that is, κc > 0. We carry out the same procedure as for undrained bulk response to obtain an approximate 
expression for the critical wavenumber:


 1 .

1
d

cr cr
d

k k
� (63)

Curiously, this approximation has exactly the same form as for the undrained bulk with some slight changes:

  
 02 ( )(1 )d

cr
b ak

GL
� (64)

and






02 .

(1 )d
f

L
 � (65)

The corresponding anti-plane limit is obtained by substitution of d anti
cr crk k  and  / (1 )d d  .

The critical wavenumber for the undrained bulk response (Equation 59) can be turned into the one for 
the drained bulk response (Equation 63) simply by substituting νu → ν and setting B = 0. The substitution 
of the undrained Poisson's ratio by the drained one is obviously relevant. The substitution of B = 0 is also 
easily explained since, for the fully drained bulk response, fault perpendicular movements do not induce an 
increased pore pressure adjacent to the shear zone.

It is worth noting that the only compressibility that shows up in Equations 59 and 63 is     ( )p p
f n  

(defined in the same way as by (Segall & Rice, 1995)). All other compressibilities, such as those related 
to uniaxial compression or the fault gouge compressibilities, influence the solution through higher-order 
terms that are neglected here, which indicates that the other compressibilities are not as important.

In the drained bulk limit, a violation of inequality (Equation 62) also indicates the onset of traditional dila-
tancy stabilization as in Segall and Rice (1995).

5.  Results
In the results section we solve the characteristic equation using a standard root-finding algorithm. We focus 
on two parameter regimes for bulk and poroelastic properties: a Westerly Granite with B = 0.81, ν = 0.25, 
νu = 0.33 and an Ohio sandstone with B = 0.50, ν = 0.18, and νu = 0.28, both under in-plane and anti-plane 
sliding. We selected Westerly Granites since it is commonly used in various rock mechanics experiments. 
The Ohio Sandstone values where then picked to give an example of a material with significantly different 
poroelastic constants. These values are taken from the poroelastic material parameters for rocks listed in 
Cheng (2016) (see also references therein).
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In addition to exploring the granite and sandstone, we also explore two limits - a thinner shear layer with 
ϵ = 1 mm and a thicker shear layer with ϵ = 10 cm – which would reveal differences corresponding to the 
fault-normal displacement stabilization process. Other chosen parameters are listed in Appendix (Table A1).

5.1.  In-Plane Shear

We first investigate the case of in-plane sliding which gives rise to more variability in the drained and 
undrained limits and better highlights the different regimes previously discussed.

Figure 2 illustrates how varying the non-dimensional flux time scale f  while fixing the non-dimensional 
bulk-diffusion time scale b  alters the critical wavenumber. Generally, a low flux time scale, for example, 
due to low permeability of the shear zone, translates into more stabilized slip since dilatancy of the shear 
zone can increase the effective normal stress and increase the frictional resistance. However, this effect is 
not only controlled by the time scale of shear-zone flux, because a more diffusive bulk will limit the range at 
which dilatancy can stabilize sliding. However, in the extreme limit that the bulk diffusion is very fast, but 
shear zone flux is very small, dilatancy can still stabilize. See, for example, the bright yellow line in Figure 2 
or dark blue line in Figure 3. However, this limit is less stable than when both f  and b  are small, since the 
bulk response is drained and thus has effectively a lower Poisson's ratio.

We clearly observe that the analytical estimates of Section 4.2 derived for the limit of κc = 0 for drained and 
undrained bulk response generally hold in all cases when solving the complete characteristic equation (Fig-
ures 2 and 3, black solid and dashed lines). Similarly we see good agreement in the case of a thicker shear 
zone (panels b and d) where the critical wavenumber is further reduced as a consequence of fault-normal 
displacements. In the limit of drained bulk response and high flux (gray solid line) there is significantly 
stabilization compared to the thinner shear zone, but the first-order correction shows some mismatch in 
these cases (panels b and d in Figures 2 and 3), indicating that higher-order terms are becoming important, 
as would be expected for a wider shear layer. We observe that the curious limit of high-flux but undrained 
bulk response (gray dashed line) is not an actual limiting case, but rather describes an intermediate stability 
characteristic in a certain parameter range for the thinner shear layer (panels a and c). This is not surprising, 
since the two time scales, f  and b , are not independent, in the sense that the flux time scale also depends 
on the hydraulic diffusivity of the bulk. Thus a limit where the bulk can be considered undrained but the 
flux time scale is fast can only approximately hold over a certain range of time scales. This intermediate 
stability characteristics of high-flux but undrained bulk response (gray dashed line) shows up quite clearly 
in the cases of a thinner shear zone (Figures 2 and 3a,c and c) as clustering or bending of the plotted lines.

For the thicker shear layer (Figures 2 and 3, panels b and d), we find substantial stabilization in comparison 
with the thinner shear layer especially in the limit of high flux and high bulk diffusivity (gray solid lines), 
which occurs due to the fault-normal displacements from dilatancy and the associated increase in normal 
stress on the shearing layer. Since this effect occurs even in the drained limit, it would also be predicted if 
the bulk were modeled as simple elastic material.

It is notable that under in-plane sliding the lowest possible critical wavenumber, representing the highest 
degree of stability at steady state, is not in limit where f  and b  are both small, which is the completely 
undrained limit. It can be seen clearly in Figure 3, that at near  1b  certain lines have a dimple going 
below black dashed line. Since this occurs  1b  and, as we will see in the following subsection, does not 
occur for the anti-plane sliding, we conclude that this additional stabilization occurs due to a transient po-
roelastic response of the bulk.

5.2.  Anti-Plane Sliding

Here we explore the stability of the steady state for anti-plane sliding. Since Equation 19 has no dependence 
on Poisson’|'s ratio and no transient poroelastic response, we observe much less variability in stability in the 
explored limiting cases than for the in-plane sliding.

Figures  4 and  5 illustrate that, as expected, the anti-plane case is much simpler than the in-plane one. 
This is because dilatancy induced pore-pressure changes are dominating the stability characteristic, but the 
drained and undrained bulk response in the anti-plane case is less significant and arises only from the dif-
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Figure 2.  Changes in critical wavenumber kcr, non-dimensionalized by anti
crk , when varying f  and keeping b  fixed at various values, for in-plane shear. 

The limit of the undrained bulk and κc = 0 (Equation 53) is shown by black dashed line. The limit of the drained bulk and κc = 0 (Equation 55) is shown by 
the black solid line. The dashed and solid gray lines indicate the results for the undrained and drained bulk, respectively, with the leading-order ϵ correction 
(Equations 59 and 63). (a) Ohio Sandstone and thinner shear zone. (b) Ohio Sandstone and thicker shear zone. (c) Westerly Granite and thinner shear zone. (d) 
Westerly Granite and thicker shear zone. We generally observe that the numerical solution coincides with the relevant analytical estimates obtained, although, 
the estimate for the undrained bulk with the leading order ϵ correction only works well for the thinner shear zones.
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ferences in effective normal stress (Equations 20 and 21), but not through the sliding-induced shear stress 
changes (Equation 19). However, these differences in drained and undrained bulk response are very small 
as can be seen by how the solid and dashed lines in Figures 4 and 5 (a and d) appear to be overlapping. 
This highlights that poroelasticity can play an important role through shear stress changes during rupture 
propagation or event nucleation, but only for in-plane sliding.
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Figure 3.  Changes in critical wavenumber kcr, non-dimensionalized by anti
crk , when varying b  but keeping f  fixed, for in-plane shear. Definitions of lines and 

panels are the same as in Figure 2.
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Figure 4.  Changes in critical wavenumber kcr, non-dimensionalized by anti
crk , when varying f  but keeping b  fixed, for anti-plane sliding. The black dashed line 

indicates an estimate of the critical wavenumber for the limit of the undrained bulk and κc = 0. Black solid line represents the critical wavenumber for drained 
bulk and κc = 0 limit (Equation 57). Gray dashed line represents results for the undrained bulk with leading order ϵ correction (see Equation 59 and following 
text). Solid gray line is the drained bulk with leading order ϵ correction (see Equation 63 and following text). (a) Ohio Sandstone and thinner shear zone. (b) 
Ohio Sandstone and thicker shear zone. (c) Westerly Granite and thinner shear zone. (d) Westerly Granite and thicker shear zone.
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In general, all the same limits exist as for the in-plane case, except we do not observe the intermediate 
stability characteristic for the undrained bulk with high flux (gray dashed line), furthermore, we do not 
observe the increased stability beyond the fully undrained limit around near  1b  (e.g., Figure 3). How-
ever, many similarities remain, for example, we see that that in the anti-plane case, much like the in-plane 
case, dilatancy induced pore-pressure changes are possible even if the bulk is highly diffusive, as long as the 
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Figure 5.  Changes in critical wavenumber kcr, non-dimensionalized by anti
crk , when varying b  but keeping f  fixed, for anti-plane sliding. Definitions of lines 

and panels are the same as in Figure 4.
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shear zone flux is sufficiently low. Further, we see that stability is for anti-plane is also characterized by the 
competition of time-scales: b  and f , where if one is large the stability can still be changed dramatically by 
making the other sufficiently small. The presence of this competition or interaction of time scales, in both 
in-plane and anti-plane sliding, suggests that problems involving fluid interactions with frictional sliding 
may be lacking important insights if they are simplified to a problem with a single diffusion time. Further, 
it stands to reason that if the problem has more diffusional timescales than b  and f  the stability may be 
altered in unexpected ways.

6.  Discussion
6.1.  Comparison With Segall and Rice (1995)

This study is greatly influenced by the seminal work of Segall and Rice (1995), which showed that inelastic 
dilatancy can significantly stabilize sliding of a frictional interface. This theory has received particular no-
tice since it offers a physical explanation for generating slow slip events on faults (Segall et al., 2010). It is, 
therefore, worth summarizing and highlighting some of the differences between the analysis presented here 
and the original analysis of Segall and Rice (1995).

The most fundamental difference between the stability analysis in Segall and Rice (1995) and in our study 
is the treatment of the bulk. We present the stability analysis in a fully coupled poroelastic medium, where-
as Segall and Rice (1995) used a single-degree-of-freedom spring-slider representation of the bulk. Thus, 
instead of solving for a critical wavenumber (or wavelength) of a perturbation, they solved for the critical 
spring stiffness. Using elementary fracture mechanics for crack stiffness, one can interpret the spring-slider 
analysis in terms of the critical wavenumber (e.g., Dieterich, 1992). Indeed, our equation (57), for example, 
provides results completely consistent with the spring-slider analysis up to a scaling factor of order 1 and 
ignoring the O(ϵ) correction. However, other aspects of the stability determined in this study cannot be 
captured with the spring-slider analysis; for example, the transient stability regimes where neither drained 
nor undrained response dominates (Figures 2–5). Such regimes depend on the wavenumber (Equation 49), 
which changes one of the relevant diffusion times, and thus cannot be captured by rescaling of the critical 
stiffness (e.g., Equations 16 and 17). In Segall and Rice (1995), the transient stability regimes, controlled by 
a relevant diffusion time, do not depend on a length scale.

The second key difference is the presence of two time scales at which pressure equilibration occurs. These 
are the time scale of pressure equilibration through shear layer flux f , and the time scale related to the dif-
fusion through the bulk b . Segall and Rice (1995) and the alternative diffusion model in Segall et al. (2010) 
only have one diffusion time scale. The analysis with two diffusion time scales provides additional insights 
into the problem. For example, there is a parameter range where the bulk diffusion can be extremely fast 
and the bulk response can be considered drained. However, the shear-layer flux time scale is sufficiently 
slow such that dilatancy can act to stabilize sliding by reducing pore pressure and increasing effective nor-
mal stress. That limit may be of important geological relevance. It has been frequently reported that the 
fault core, where shear localization occurs, has very low permeability (Behnsen & Faulkner, 2011; Caine 
et al., 1996; Wibberley & Shimamoto, 2003), while the adjacent damage zone is highly permeable (F. Ches-
ter & Logan, 1986; Mitchell & Faulkner, 2012).

The final key difference, which is also discussed in some detail in the following subsection, is that our study 
accounts for the fault-normal displacements that arise from dilatancy and pressure changes in the shear 
zone. This effect was not considered by Segall and Rice (1995), and it has not been studied previously in the 
fault mechanics literature to the best of our knowledge. As has been shown here, this effect gives rise to a 
different mechanism through which dilatancy can stabilize sliding.

6.2.  Fault-Normal Displacements

Theoretical studies and field-based observations usually support the idea that seismic slip in fault gouge oc-
curs in an extremely localized shear layer of 1–100 μm. The stability analysis and numerical simulations of 
Rice et al. (2014) and Platt et al. (2014) used a thermo-poro-mechanical model and suggested that the width 
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of a shear zone arises as a competition between destabilizing thermal pressurization process and a stabilizing 
process that may be dilatancy or rate-strengthening friction. In the absence of a stabilizing process, the shear 
zone thickness becomes infinitesimal. Their findings are generally supported in field observations. For exam-
ple, J. S. Chester et al. (2005) examined the shear zone of the Punchbowl fault in California which has been 
exhumed from 2–4 km depths and found the principal shear layer of 100–300 microns. De Paola et al. (2008) 
examined cataclastic fault cores in the Northern Apennines and observed extreme shear strain localization 
of some tens of microns. However, studies also suggest that the shear layer can be wider. Boullier et al. (2009) 
examined two borehole cores, which intersected the Chelungpu fault at about 1 km depth after the Chi-Chi 
earthquake in 1999. Their analysis suggested thin shear localization zone from one core of 2 mm and the 
other 20 mm. While these widths are small compared to virtually all other characteristic dimensions of that 
earthquake, it does suggest that even localization at seismic ruptures can vary substantially.

In this study, we have focused on the stability around steady-state quasi-static (slow) sliding. It is less clear 
how localized the shear zones are at creep rates in the range of centimeters to millimeters per year. Lab-
oratory experiments suggest that the width of such localization depends on the normal stress, where a 
more delocalized shear-zone is formed at low normal stress (Torabi et al., 2007). These observations beg 
the question of how localized are the shear zones in regions of slow slip and tectonic tremor in subduction 
zones. The same question applies to the roots of some strike-slip faults where it has been suggested that 
pore pressure may be near lithostatic (e.g., Rubinstein et al., 2007; Thomas et al., 2009). It has recently been 
argued that tectonic mélanges, some hundreds of meters thick, may play an important role in aseismic slip 
processes along the subduction zone interface (Fagereng et al., 2018; Raimbourg et al., 2019). It is not clear 
if such large structures can be regarded as a single shear zone and would thus fall under the scope of our 
analysis. However, geological observations of mélanges strongly suggest that not all shear strain on faults 
occurs in extremely localized zones.

If the shear layers are sufficiently thick during quasi-static shear, as appears to be possible from lab and field 
observations, then they can generate fault-normal displacements that stabilize sliding. These displacements 
are largely caused by the same dilatancy process that reduces pore pressure in the shear zone. The addition-
al stabilization due to fault-normal displacements occurs because the shear layer must expand against the 
stiff host rock, where slip speed is increasing, and that increases the normal stress on the layer and hence 
its resistance to sliding. Similarly, where slip speed decreases, the shear zone compacts which reduces nor-
mal stress and resistance to sliding. This may also stabilize sliding since the reduced normal stress causes 
the perturbation in slip speed to decrease and tend to steady state and the reduced normal stress may pre-
vent a local increase in shear stress on the fault. decreases From Equations 63 and 65, we can infer that if 

  02 / (1 )d f L   is order 1/10 then shear-zone expansion, in drained conditions, will produce significant 
stabilization due to shear-zone expansion. Since 2f0/(1 − ϕ) is typically order 1, we suggest that the shear zone 
thickness produces significant stabilizing fault-normal displacements through dilatancy if ϵ ≳ 0.1 L/γ. Taking 
L ∼ 10 μm and γ ∼ 10−4 indicates that the shear layer of the width ϵ ∼ 1 cm can be considered an approximate 
threshold at which fault-normal displacements are large enough to produce a significant stabilizing effect. 
The same estimate is found for drained bulk (see Equation 61) if (3 − 2B(1 + νu)) ∼ 1, which is typically true.

We hypothesize that, during shear localization, the fault-normal motion may delay or perhaps prevent fur-
ther localization, since a perturbation, which otherwise could induce an instability process with extreme 
localization, may be stabilized by the (larger) shear-zone width at that time. Note that the conclusions may 
be different for other assumptions of the relevant pore pressure values within the fault zone, such as taking 
the largest value of pore fluid pressure, which would promote localization. Other factors not considered in 
this study may affect shear localization, such as thermal pressurization of pore fluids considered in Rice 
et al. (2014) and Platt et al. (2014). However, since the effects of thermal pressurization on the nucleation 
process is not likely until late in the nucleation process (Segall & Rice, 2006), which is also when inertial 
effects are important and our analysis would not be valid.

7.  Conclusions
The stabilizing effect of dilatancy on slip along a frictional fault has garnered interest since the mecha-
nism was proposed and formulated by Segall and Rice (1995) within the scope of the rate-and-state fric-
tion framework. While a number of studies have implemented dilatancy in simulations of slow and fast 
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slip on faults with rate-and-state friction, the implementation and formulation of dilatancy in a fully-cou-
pled poroelastic solid has been missing. Here we present a closed system of equation describing a shearing 
gouge layer under in-plane and anti-plane loading with rate-and-state dependent friction and undergoing 
state-dependent dilatancy/compaction.

We have presented a linearized analysis of the stability of shearing in the layer around steady state. We 
have identified two mechanisms through which dilatancy can stabilize frictional sliding: first, by reducing 
pore pressure in the shearing layer and second, by expanding the layer and generating fault-normal dis-
placements in the bulk. The former mechanism was identified by Segall and Rice (1995), where they show 
that it is most effective for an undrained bulk with loss of stabilization as the bulk response approaches the 
drained limit. We add to this criterion by highlighting that such stabilization can occur even if the bulk is 
highly diffusive and responds in a drained manner, due to lower flux within the shear layer. The latter mech-
anism, due to fault-normal displacements, has not been identified previously, to the best of our knowledge. 
It primarily results from dilatancy-induced expansion of the shear zone. The expanding shear zone presses 
against the host rock and increases normal stress acting on the shear zone, thus increasing frictional resist-
ance. This effect does not require the presence of pore pressure changes and occurs even if the shear zone 
and bulk responses are drained.

The results of this study highlight the importance of considering the realistic hydro-mechanical struc-
ture of faults around the thin shear layers, including the actual width of the shearing layer as well as the 
potential difference between the hydraulic diffusivity of the shear layer (which is thin but finite) and the 
surrounding host rock. The identified stability properties near steady-state sliding will inform future nu-
merical explorations of the full non-linear problem of a shear fault sliding with dilatancy/compaction in a 
poroelastic solid.

Appendix A:  Parameter Values
Here we discuss the parameters that are kept constant when we numerically solve for the roots of the 
characteristic equations at critical stability, as shown in Figures 2–5. These parameters and their values are 
summarized in Table A1.

The material parameters that are fixed are the shear modulus G of the bulk, various compressibilities of the 
gouge, and the reference porosity of the gouge at steady state sliding ϕ0, which is assumed to be equivalent 
to the reference void volume per unit volume. We use G = 30 GPa which is selected somewhat arbitrarily 
but which is a common value used for crustal rocks and should be applicable to well-packed fault gouge. 
The other bulk poroelastic parameters are varied and explained in the main text. It is worth noting that, 
to explore different values of the non-dimensional parameter f  in Figures 2–5 we only change κc but, to 
explore different values of b , we change both the hydraulic diffusivity of the bulk and κc so that f  is fixed 
(since it depends on both c and κc), in accordance with Equations 52 and 51.

In selecting the various gouge material properties, we broadly follow Segall and Rice  (1995), Rice 
et al. (2014), and Platt et al. (2014) where appropriate. We take     9 10.44 10 Pap

f  (Fine & Millero, 1973). 
We use     9 16.0 10 Pap

n  which Rice et al. (2014) and Platt et al. (2014) inferred to be appropriate for 
damaged rocks based on the data by Wibberley and Shimamoto (2003) and using the analysis of Rice (2006). 
The compressibility of the gouge grains,  p

g , has not, to the best of our knowledge, been featured in previous 
literature. We expect this compressibility to be low compared to the fluid or pore compressibilities. We sim-
ply assume that it is the inverse of a typical rock bulk modulus of 50 GPa, that is,     9 10.02 10 Pap

g . The 
uniaxial compressibilities  f , n , and g  have not received much attention in the previous literature. Here 
we assume that we can obtain the uniaxial compressibility by multiplying the isotropic compressibility by 
a factor of 5/9. As discussed in the main text, this is only strictly true for a linear elastic material. However, 
this likely offers a reasonable correspondence between isotropic and uniaxial compressibility more general-
ly. Nevertheless, we suggest that more studies are needed to determine if uniaxial compressibilities can be 
vastly different from the isotropic compressibilities. We select the reference porosity at steady-state sliding, 
also interpreted as the void volume per unit volume, as ϕ = 0.068. This is a commonly used value based on 
Wibberley and Shimamoto (2003). Finally, we follow Segall and Rice (1995) in their modeling of the Marone 
et al. (1990) experiments and select the dilatancy coefficient as γ = 1.7 ⋅ 10−4.
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For the friction and fault loading parameters, we select fairly standard values (Table A1) frequently used 
in the literature. It is worth mentioning that, for simplicity, we have taken the Linker and Dieterich (1992) 
constant αLD = 0, which implies no explicit dependence of the state variable on normal stress changes. This 
essentially means that we consider the effective normal stress changes to be gradual enough that the shear 
stress stays proportional to the effective normal stress, a reasonable assumptions given the slow slip con-
sidered. In Table A1, we provide both initial shear and normal stress for convenience, but the two are not 
independent due to the condition that the fault is initially at steady state and are related through τ0 = f0σ0.

Throughout the main text, we have mostly used G, B, ν, νu, c to fully describe the poroelastic bulk properties. 
However, in a few cases, we have used different set of parameter for compactness, that is, M, α, and κ. Here 
we list a few relationships that would allow the reader to convert between these parameter sets:
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Data Availability Statement
This is a theoretical paper and contains no data. Code for determining the critical stability and solving Equa-
tion 41, which also contains explicit expressions for equations too long to write out in this paper, is found 
here https://doi.org/10.5281/zenodo.5005276 (see Heimisson, 2021).
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Symbol Description Value

Bulk and gouge material properties

  G Shear modulus 30 GPa

   ,p
f f

Isotropic and uniaxial fluid compressibility 0.44 ⋅ 10−9 Pa−1, 0.24 ⋅ 10−9 Pa−1,

   ,p
n n

Isotropic and uniaxial pore volume compressibility 6.0 ⋅ 10−9 Pa−1, 3.3 ⋅ 10−9 Pa−1,

   ,p
g g

Isotropic and uniaxial solid gouge compressibility 0.020 ⋅ 10−9 Pa−1, 0.011 ⋅ 10−9 Pa−1,

  ϕ0 Reference porosity 0.068

Friction and loading parameters

  L Characteristic state evolution distance 100 μm

  A Direct rate dependence of friction 0.01

  B State dependence of friction 0.02

  αLD Linker and Dieterich (1992) constant 0.0

  V0 Steady-state and reference sliding velocity 10−9 m s−1

  f0 Steady-state coefficient of friction at V0 0.6

  τ0 Initial shear stress 20.0 MPa

  σ0 Initial effective normal stress 33.3 MPa

Table A1 
Parameters That are Kept Constant in the Study

https://doi.org/10.5281/zenodo.5005276
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