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Slow slip events are often accompanied by tremor but how tremor is generated is yet elusive. In this 
study, we test the possibility that it is an inertial vibration. In the case of a single-degree-of-freedom 
spring and slider system with mass per unit area M , governed by rate-and-state friction with effective 
normal stress σ ′ , excitation of inertial vibrations emerges when normal stress (σ ′) is low, and loading 
rate (V l) is high. Accordingly, tremor can be excited in a low effective normal stress (σ ′) zone, for 
example, in a zone of high pore pressure, when the loading rate (Vl) is temporally increased, as can 
happen during a slow slip event. A high loading rate helps to sustain the vibration, but a long-lasting 
attenuating tremor can still be excited even with a moderate velocity perturbation as long as the normal 
stress is sufficiently small. We use numerical simulations to verify that this hypothesis holds for a 
one-dimensional fault. The dominant frequency of the tremor is close to the fundamental frequency 
of resonance of the frictionless shear crack at a low sliding rate. Higher frequency modes are excited 
at higher sliding velocity. We show simulations of spontaneous slow slip events associated with tremor 
radiated from inertial vibration of a fault patch with locally low effective normal stress. This model 
provides a possible explanation for tectonic tremor associated with slow slip events.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Tremor, long-duration weak ground vibrations that lack the im-
pulsive onset or seismic signal generated by regular earthquakes, 
have been observed in various geologic systems. Tremor can occur 
in volcanic and hydrothermal systems where it is generated at rel-
atively shallow depth, typically less than 1-2 km, and is thought to 
be related to the presence of fluids (Julian, 1994; Chouet and Ma-
toza, 2013). Similar signals originating from much greater depths, 
typically 40 km, were reported along subduction zones (Obara, 
2002; Miller et al., 2002). There, tremor comes in association with 
transient slip events, commonly called slow slip events, which 
are detectable from geodetic measurements (Rodgers and Dragert, 
2003; Schwartz and Rokosky, 2007; Beroza and Ide, 2011). Tectonic 
tremor along subduction zone is thought to be associated with 
zones of high pore fluid pressure (e.g., Shelly et al., 2006; Rubin-
stein et al., 2008; Hawthorne and Rubin, 2010; Brown et al., 2005; 
Audet and Schaeffer, 2018; Calvert et al., 2020). Tectonic tremor 
has also been observed on the San Andreas fault (e.g., Nadeau and 
Dolenc, 2005; Shelly, 2010; Rousset et al., 2019), where it also 
seems to be associated with high pore pressure (Thomas et al., 
2012). Tremor is often interpreted as a swarm of low-frequency 
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stick-slip events (e.g., Dmitrieva et al., 2013; Shelly et al., 2007; 
Luo and Liu, 2019). There is, however, no consensus view on how 
tremor is generated. Here we explore the possibility that it is due 
to inertial vibrations.

Friction-induced inertial vibrations are commonly observed in 
various mechanical systems, for example, in musical instruments 
(one can think of violin for example (e.g., Smith and Woodhouse, 
2000)) and in vehicle brake systems (one can think of brake squeal 
for example (e.g., Kinkaid et al., 2003)). They are thought to arise 
from friction between sliding materials (Ibrahim, 1994). Modern 
friction laws recognize that friction depends on the slip rate and 
past history of sliding, generally using rate-and-state friction for-
malism (Marone, 1998). The rate-and-state friction is known to 
account well for the frictional behavior of various materials, rocks 
in particular (Baumberger and Caroli, 2006; Dieterich and Kilgore, 
1994), as long as intense weakening mechanisms, such as flash 
heating, for example, are not activated. The rate-and-state friction 
law can lead to stable or unstable slip depending on the friction 
parameters (Rice and Ruina, 1983). Unstable slip arises from fric-
tion decreasing with sliding rate, and the slip motion (acceleration, 
deceleration, and arrest) is then controlled by inertia (Rice and Tse, 
1986). Friction-induced vibration can arise in the case of an inter-
face governed by rate-and-state friction when inertial influence is 
high (i.e., large mass, high slip velocity, and low normal stress) (Im 
et al., 2019).
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In this study, we built on the analysis of Im et al. (2019) to 
show that inertial friction-induced vibrations can be excited by 
slow slip events on fault patches with high pore pressure. We first 
review the condition of tremor generation in the case of a sim-
ple, one-degree-of-freedom spring-and-slider system forced by a 
prescribed loading rate. Next, the analysis is expanded to a one-
dimensional fault. Finally, we show simulations in which inertial 
vibrations are generated during spontaneous slow slip events by a 
fault patch with locally low effective normal stress.

2. Frictional stability and inertial vibrations with rate-and-state 
friction

Here, we first review the condition of frictional stability and 
inertial vibration in the case of a single-degree-of-freedom spring-
slider system obeying rate-and-state friction (RSF) (Im et al., 2019). 
Next, we review the stability analysis of one-dimensional fault 
anti-plane slip (Rice et al., 2001) and compare the two stability 
conditions.

2.1. Spring and slider system

In the RSF framework, friction is dependent on slip velocity and 
a state variable θ (Dieterich, 1979; Ruina, 1983). We use the most 
common RSF law,

μ = μ0 + a ln

(
V

V 0

)
+ b ln

(
V 0θ

Dc

)
, (1)

where μ0 is a reference friction coefficient at reference velocity 
V 0, Dc is a critical slip distance, and a and b are empirical con-
stants for the magnitude of direct and evolution effects, respec-
tively.

Different formulations have been proposed to describe the state 
variable (θ ) evolution. In this work, we use the ‘slip’ law (Ruina, 
1983), which provides the best match to laboratory observations 
(Bhattacharya et al., 2015),

dθ

dt
= − V θ

Dc
ln

(
V θ

Dc

)
. (2)

However, the analysis presented here also applies to the other 
commonly used evolution law, the ‘aging law’ (Dieterich, 1979), as 
shown by Im et al. (2019).

The equation of motion of the spring and slider system is

M δ̈ = K (δl − δ) − μσ ′, (3)

where M is mass per unit area (kg/m2), K is a stiffness expressed 
in units of shear stress (Pa/m), σ ′ is effective normal stress, δl is 
load point displacement, and δ is slider displacement.

Assuming that the friction parameters (a, b, Dc ) are constant, 
sliding at velocity Vl can be stable only when K > Kc where the 
critical stiffness Kc is (Rice and Ruina, 1983),

Kc = (b − a)σ ′

Dc

[
1 + M V 2

l

σ ′aDc

]
. (4)

The critical stiffness can thus be written as the sum of a quasistatic 
critical stiffness,

Kc,qs = (b − a)σ ′

Dc
, (5)

and of a dynamic critical stiffness,

Kc,dyn = b − a

a

M V 2
l

2
. (6)
Dc

2

The second term in the bracket of equation (4) is a dimension-
less number that quantifies the contribution of inertia to frictional 
instability,

η = Kc,dyn/Kc,qs = M V 2
l

σ ′aDc
. (7)

This term implies that the system tends to become unstable for 
a larger mass or velocity. Since this term is sensitive to loading 
velocity (η ∼ V 2

l ), any velocity weakening (a − b < 0) system can 
become unstable at sufficiently high velocity. We also introduce a 
dimensionless critical stiffness,

κc = Kc

K
. (8)

The two dimensionless parameters κc and η determine if the 
system yields stick-slip motion or stable sliding and inertial vibra-
tions or not. The slip is unstable if κc > 1 (Rice and Ruina, 1983). 
Im et al. (2019) showed that the inertial vibration tends to emerge 
when η > 1. We note that κc = 1 is a strict linear stability cri-
terion as, mathematically, it defines a Hopf bifurcation point, but 
η = 1 is not. Im et al. (2019) showed that the emergence of iner-
tial vibration is also influenced by K . Equation (7) implies that the 
harmonic inertial vibrations may emerge when the inertial term, 
M V 2

l , is high or normal stress is low.
Fig. 1 shows how the sliding mode of the spring-and-slider sys-

tem varies depending on the loading velocity (V l) and effective 
normal stress (σ ′). Since κc and η are dependent on the normal 
stress and loading velocity, the V l – σ ′ space can be divided into 
four different zones (Fig. 1a): (i) κc > 1 & η < 1 (unstable & low-
inertia) where sliding is stick-slip (Figs. 1b&c); (ii) κc > 1 & η > 1
(unstable & high-inertia) where sliding results in quasi-harmonic 
vibrations (Figs. 1d,g&j); (iii) κc < 1 & η < 1 (stable & low-inertia) 
where sliding rapidly converges to stable sliding (Figs. 1e&h); (iv) 
κc < 1 & η > 1 (stable & high-inertia) where harmonic vibration 
attenuates until stable sliding is established (Figs. 1f&i).

We see that although the vibration emergence criterion is not 
rigorously derived, it does approximatively capture the condition 
for the emergence of inertial vibrations in our numerical simula-
tions. Tremor can actually occur as an attenuating vibration even 
if κc < 1. This observation considerably broadens the condition for 
tremor generation since it significantly reduces the velocity re-
quirement. For example, if the condition of κc > 1 were essential 
for tremor generation, high-velocity loading (>∼1 mm/s in Fig. 1a) 
would be required to generate tremor. However, thanks to inertia, 
if normal stress is sufficiently low, long-lasting vibrations can oc-
cur with a moderately perturbed loading rate (e.g., Fig. 1i) by, for 
example, a nearby slow slip event. Fig. 1h exhibits subtle vibra-
tion even at (η < 1), implying that the domain where vibration 
can emerge is broader and not strictly delimited by η = 1. This 
mechanism could explain tectonic tremor, which is thought to oc-
cur where pore pressure is near lithostatic (e.g., Shelly et al., 2006; 
Rubinstein et al., 2008; Hawthorne and Rubin, 2010) and in asso-
ciation with slow slip events, typically a few orders of magnitude 
larger than the tectonic loading rate.

The inertial vibrations generated by single-degree-of-freedom 
spring and slider system are harmonic, as can be seen in Fig. 1, 
with a frequency close to the fundamental frequency of the mass-
spring system (Im et al., 2019):

fn = (1/2π)
√

K/M. (9)

Note that the vibration frequency is independent of the loading 
velocity. Given the simulation parameters K = 40 MPa/m and M =
450000 kg/m2, the fundamental frequency is ∼ 1.5 Hz, which is 
close to the dominant frequency observed in the simulations that 
show inertial vibrations (panels (d), (f), (g), (i), and (j) of Fig. 1).
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Fig. 1. Synoptic view of the behavior of the spring-and-slider system. (a) Peak velocity. Empty gray circles denote stable sliding. Curved black line denotes theoretical stability 
transition, κc = 1, and gray line denotes η = 1. (b-j): normalized (divided by normal stress) shear stress curves of selected (marked in panel a) cases. We used rate-and-state 
parameter a = 0.003, b = 0.006, Dc = 100 μm, M = 450000 kg/m2, K = 40 MPa/s and initial velocity 1 nm/s. The mass M represents ∼190 m height rock mass with a 
density of 2400 kg/m3. This value was tuned to match the dynamic simulations of Fig. 4 (∼1.5 Hz vibration in ∼1 km fault patch). The stiffness is equivalent to a 1 km long 
fault with shear modulus G = 30 GPa and Poisson ratio 0.25 (Equation (12)).
2.2. Stability of one-dimensional fault slip

The linear stability analysis of a one-dimensional fault with rate 
and state friction was conducted by Rice et al. (2001). They define 
a critical wavenumber from anti-plane velocity perturbation. The 
critical wavelength λc is twice the critical fault length Lc , so the 
critical wavenumber is kc = 2π /λc = π /Lc . The linear stability con-
dition presented by Rice et al. (2001) can then be written

Kc ≈ G

Lc
= 2

π

(b − a)σ ′

Dc

√
1 + q2, (10)

where

q = G Vl

2
√

a(b − a)σ ′cs
, (11)

G is shear modulus, and cs is shear wave speed. The dimensionless 
number q defines the contribution of dynamic effect to frictional 
instability. Similar to η, q increases at high velocity and low nor-
mal stress. The first expression Kc ≈ G/Lc in equation (10) comes 
from the equivalent lumped stiffness typically introduced to esti-
mate the stiffness of a one-dimensional fault (Dieterich, 1992):

K = αG

L
, (12)

where α is a shape factor, typically close to 1, and L is the length 
of the unstable fault patch.

The stability criterion for the spring-slider system (equations 
(4)) and 1D fault (equations (10) and (11)) can be compared by 
the equivalent stiffness of slipping patch K ≈ G/L. It is apparent 
that equations (10) and (4) are comparable at the quasistatic limit 
(η � 1 and q�1). One can further show that equations (10) and 
(11) are equivalent to equation (4) at the dynamic limit (η � 1 and 
q�1) as well. Substituting cs = √

G/ρ and equation (11) into (10)
with assuming dynamic limit q � 1, equation (10) can be rewritten 
as
3

Kc,dyn ≈ G

Lc
= b − a

a

V 2

D2
c

ρLc

π2
. (13)

Equation (13) is equivalent to dynamic critical stability of the 
spring slider system (i.e., equation (6)) when the lumped mass per 
unit area M is

M ≈ ρL

π2
. (14)

The notion of a lumped mass, in addition to the equivalent stiff-
ness (equation (10)), makes it possible to represent approxima-
tively the behavior of finite size fault with account for inertial 
effects. We verify below the correspondence and calibrate the 
lumped mass in our numerical simulations of inertial vibration of 
a 1D fault (equation (21)).

3. Simulation methods

We use two different methods to simulate frictional sliding 
along a one-dimensional fault with inertia. First, we conduct fully 
dynamic finite difference simulations taking into account inertia 
and the dynamic stresses associated with the elastic wave prop-
agation in the medium. Because of the computational cost and 
some numerical instabilities we observed at extremely low normal 
stress cases with this method, we use this simulation method to 
validate the emergence of inertial vibration at moderately low nor-
mal stress (1 MPa) and to calibrate the simulations done with the 
other method. Alternatively, we use a lumped-mass boundary ele-
ment method to systematically explore how the vibration evolves 
depending on the loading rate and effective normal stress. We also 
use this method to test if inertial vibrations can arise on a patch 
with locally low effective normal stress embedded in a fault that 
can produce spontaneous slow slip events.

3.1. Fully dynamic finite difference simulations

We used FLAC 3D (Itasca Consulting Group Inc., 2007) to sim-
ulate the fully dynamic response of a large domain bounded by a 
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Fig. 2. Simulation Methods. (a): Finite difference simulation domain. Normal stress 1 MPa, density 2400 kg/m3 is assigned to 20 km × 20 km 2D plane strain rock mass. The 
bottom boundary is divided into constant loading (blue arrows) and velocity weakening RSF boundary of length L (red line). See supplementary materials for more detail. (b): 
Illustration of boundary elements. The quasistatic displacement-stress relationship between two boundary elements in panel b is defined in equation (16). (c, d): Simulation 
parameters for constant loading rate (c) and slow slip (d) boundary element simulations. Actual simulation is conducted in half of the simulation domain. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)
shear fault and assuming plane strain. The overall domain size is 
set to 20 km × 20 km, which is large enough to avoid influence 
from wave reflection at the boundaries. The intent is to simulate 
the response of the rate-weakening fault patch (red line in Fig. 2a) 
to the loading resulting from a slow slip event on the surrounding 
fault area (blue arrows in Fig. 2a). The loading rate is constant. So, 
these simulations ignore that the dynamics of the slow slip event 
might be affected by the response of the RSF fault patch.

We conducted simulations with 6 different fault lengths (L =
693, 942, 1218, 1526, 1867, 2246 m) with shear modulus G =
30 GPa and rock density ρ = 2400 kg/m3. To define the influence 
of rock modulus and density, we additionally conducted simula-
tions with two different G − ρ combinations: (i) G = 15 GPa and 
ρ = 2400 kg/m3 and (ii) G = 30 GPa and ρ = 500 kg. Normal stress 
is 1 MPa in the entire domain and loading rates Vl are varied 
within the range of 0.1 ∼ 1 mm/s to define the influence of veloc-
ity on the transition from stick-slip to vibration. For the velocity 
weakening fault patch, we assigned rate and state friction param-
eters a = 0.003, b = 0.006, and Dc = 20 μm (see supplementary 
material and figure S1 for more details).

3.2. Lumped mass boundary element

In the boundary element simulations, the system is simplified 
via two assumptions: (i) stress transfer is assumed quasistatic, and 
(ii) mass is lumped at each boundary element. Hence, the sim-
ulation is computationally much lower-cost and allows for small 
timestep and element size. We use this simulation method to ex-
plore how a rate-weakening RSF fault patch responds to forcing 
by an imposed slip rate and might generate tremor. These sim-
ulations are designed to be comparable to those run with FLAC. 
The parameters are tuned to yield matching results. We also use 
this simulation approach to simulate the coupling between spon-
taneous slip events and tremor generating fault patches.
4

We set a mirrored-and-repeated one-dimensional boundary el-
ement fault surface in an infinite medium (Fig. 2b). Frictional prop-
erties and normal stresses are heterogeneous (Fig. 2c&d). With 
the simplifications above, the momentum balance equation at ith

boundary element is

Mi δ̈i =
∑

j

Ki j(Vloadingt − δ j(t)) − μiσ
′
i , (15)

where M is lumped mass per unit contact area of each element, 
δ is displacement, V loading is far-field loading velocity, t is time, μ
is friction, σ ′ is effective normal stress, and Kij is a stiffness ma-
trix that defines the elastic stress change at element i from the 
displacement of element j. The left-hand side term is a direct cal-
culation of the inertia effect from lumped mass Mi . The first term 
on the right-hand side represents the sum of all the applied stress 
to the ith element by the displacements of jth elements and far-
field loading. And the last term represents frictional resistance.

Our formulation (equation (15)) differs from the boundary ele-
ment approximation in which the effect of inertia is accounted for 
with radiation damping (Rice, 1993). Instead of the mass × accel-
eration in equation (15), radiation damping approximates inertia 
by velocity-dependent damping, representing energy radiation as 
seismic waves (Rice, 1993). Our lumped mass approximation does 
not consider the energy radiation effect and possibly overestimates 
the inertia effect. We choose the lumped mass approximation be-
cause the stability of 1D fault dynamical behavior (equation (13)) is 
comparable to the spring-slider system (equation (17)). In contrast, 
the radiation damping approximation does not allow for compar-
ison with the linear stability analysis. For example, stability anal-
ysis in 1D fault slip (equation (10) and (11)) shows that the fault 
slip becomes unstable at a high velocity. However, the radiation 
damping approximation results in slip being stabilized as velocity 
increases (e.g., Dmitrieva et al., 2013). We could have alternatively 
used a boundary integral method, which allows fully dynamic sim-
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Fig. 3. A snapshot of velocity field for (a) stick-slip motion (Vl = 0.1 mm/s; Fig. 4 black line) and (b) harmonic vibration (Vl = 0.4 mm/s; Fig. 4 red line). Simulated RSF fault 
patch is 1218 m. (see also supplementary videos S1 and S2).
ulations (Lapusta et al., 2000). We opted for the lumped mass 
model for consistency with our previous contributions on the mod-
eling of slow slip events (Im et al., 2020) and inertial vibrations (Im 
et al., 2019).

The mass per unit area M can be rewritten as M = ρhc , where 
ρ is rock density and hc is the characteristic height of the rock 
mass (vertical from contact area), which defines the vertical range 
of inertial influence. The parameter hc (and therefore M as we as-
sume uniform ρ) is independent of the simulation element size 
but depends on the fault length. Below, we show that M (and 
hence, hc) and the fault length L are linearly dependent (equa-
tion (21)) for the frequency of the 1st inertial vibration mode to 
be equivalent in the two types of simulations, as also derived from 
the stability analysis (equation (14)). The value of M in the bound-
ary element simulations is selected based on this criterion.

Since we assume quasistatic stress transfer, Kij can be written 
as (Crouch, 1976; Dieterich, 1992):

Kij = G

2π(1 − ν)

(
1

xi − x j + l
− 1

xi − x j − l

)
, (16)

where G is the shear modulus, ν is the Poisson coefficient, and l is 
the half-length of the element.

We solve Equation (15) with the method of Im et al. (2017), 
which ensures numerical stability. To apply the spring-slider solver, 
we rewrite equation (15) into a spring-slider form (i.e., equation 
(3)),

Mi δ̈i = Kii (�i − δi) − μiσ
′
i , (17)

where the loading from the surrounding fault displacement at ith

node �i is

�i = Vloadingt +
∑
j 	=i

Ki j

Kii

(
Vloadingt − δ j

)
. (18)

3.2.1. Constant loading rate
We simulate a 4 km mirrored-repeated fault in a medium with 

G = 30 GPa and ν = 0.25. The rate-weakening fault patch is 1 km 
long with RSF parameters: a = 0.003, b = 0.006. The surrounding 
fault has constant normal stress (30 MPa) and is velocity strength-
ening with RSF parameters: a = 0.006, b = 0.003 (Fig. 2c). For 
comparison with Fig. 1, we explore a range of effective normal 
stress on the velocity-weakening fault patch and loading velocity. 
The velocity strengthening zone is initialized with a steady-state at 
a given initial velocity. The velocity weakening zone is initialized 
with 1/10 of the loading rate to apply initial stress perturbation. 
We assigned Mi = 450000 kg/m2 to each element, a value that was 
5

determined to yield frequency similar to those obtained in the fully 
dynamic finite difference simulation result (1.5 Hz at L ∼1000 m).

3.2.2. Slow slip and inertial vibrations
The difference with the previous simulations is that the fault 

is assigned a friction law that allows for spontaneous SSEs. This 
is achieved by a transition from rate-weakening behavior at a low 
sliding rate, so that instabilities can emerge, to rate-strengthening 
at a higher sliding rate, so that the slip rate can’t reach values 
typical of seismic slip (Rabinowitz et al., 2018; Im et al., 2020). The 
point of the simulation is to test if a zone with high pore pressure 
anomaly (low normal effective stress) within the source of slow 
slip events may produce inertial vibrations due to the temporary 
increased loading rate.

The fault length is 10 km and is loaded at tectonic loading rate 
(Vl = 0.5 nm/s). The fault is divided into (i) a high normal stress 
(500 MPa) stable sliding (a0 − b > 0) zone, (ii) a low normal stress 
(7 MPa) slow earthquake zone (a0 − b < 0) and, additionally, (iii) a 
central slow earthquake zone (a0 −b < 0) with extreme lower nor-
mal stress (0.1 kPa) (Fig. 2d). We assumed localized high-pressure 
zone (400 m) imbedded in relatively large (5.6 km) slow slip zone. 
Since the expected inertial vibration fault length is shorter (400 m) 
than in the previous simulations (1 km), we use smaller mass per 
unit area (M = 180000; equation (21)).

The friction parameters at low velocity are identical to those 
chosen in the other simulations (a0 = 0.003, b = 0.006 for un-
stable, a0 = 0.006, b = 0.003 for stable), but ‘a’ is now velocity 
dependent according to:

a(V ) = a0 + Sa log10
Va + V

Va
. (19)

We used Va = 2 × 10−8 m/s and Sa = 0.001/decade. These values 
are consistent with laboratory experiments and can produce real-
istic slow slip events (Im et al., 2020).

4. Simulation results

4.1. Finite difference simulations

All simulation results show unstable sliding as expected from 
the stability analysis. With our input parameter of finite difference 
simulations (G = 30 GPa, ν = 0.25, b − a = 0.003, σ ′ = 1 MPa, 
Dc = 20 μm with α = 1), the quasistatic (V = 0) critical length 
Lc ∼ 314 m (equation (10)), which is smaller than the shortest 
fault length tested (693 m). At a slow loading rate, the central 
RSF patch produces repeating stick-slip instabilities (Fig. 3a, Fig. 4
black lines). When the loading rate is higher, it produces quasi-
harmonic vibrations as the high loading rate limits the possibility 
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Fig. 4. Velocity (a), frequency (b) and shear stress (c) evolution with time at the center of the RSF patch with unstable patch size L = 1218 m and shear modulus G = 30 GPa 
(see figure S6-S23 for different patch size L = 693, 942, 1526, 1867, 2246 m, density ρ = 500 kg/m3 and shear modulus G = 15 GPa cases). The different symbols in (b) 
represent the frequency of highest amplitude harmonic vibrations calculated within 4 s (−2 s to +2 s from the plotted point) moving time window. Curves and symbols are 
colored according to the loading rate. The dashed horizontal line denotes the frequency of the 1st mode of inertial vibration calculated with equation (20). Inset in panel b 
shows normalized amplitude spectra (1-20 s).
for the quasistatic low-velocity stage that would occur between 
stick-slip events (Fig. 3b, Fig. 4 red and blue lines). When the mo-
tion is stick-slip, a single propagating wave is apparent (Fig. 3a). 
During inertial vibrations, the velocity field shows radiated har-
monic waves (Fig. 3b) (see also supplementary video S1 and S2).

For the loading velocity of 0.1 mm/s with L = 1218 m, 
the model yields periodic stick-slip events with a frequency 
of ∼0.5 Hz, dictated by the ratio of the stressing rate to the 
co-seismic stress drop (Fig. 4c). When the loading velocity is 
0.4 mm/s, the model yields inertial quasi-harmonic vibrations with 
a frequency of ∼1.5 Hz (Fig. 4b inset). We observe that the period-
icity of the vibrations breaks up at a higher velocity of 0.6 mm/s 
(Fig. 4b inset). In this case, the dominant frequency evolves with 
time (blue markers around 5-8 s in Fig. 4b). This drift would not 
happen with a spring-and-slider system, in which a velocity in-
crease only results in a larger amplitude of the harmonic vibrations 
(Im et al., 2019). A difference between the spring-and-slider and 
the one-dimensional fault simulations is that the finite-size fault 
does not always yield a single mode of fault vibration (e.g., Fig. 6). 
The temporal high-frequency drifts down and seems to be stabi-
lized around ∼1.5 Hz, which roughly corresponds to the frequency 
of the periodic harmonic vibration (red triangles in Fig. 4b).

We find that the frequency of the inertial vibration in 1D fault 
can be estimated by assuming that it arises from a resonance 
whereby the fault length is half the wavelength of the shear wave:

fn = 1/2L
√

G/ρ, (20)
6

where L is fault length, G is shear modulus, and ρ is the density 
of the rock. Using the parameters corresponding to the simulations 
of the figure (G = 30 GPa, ρ = 2400 kg/m3), the fundamental fre-
quency for L = 1218 m is 1.45 Hz (dashed line in Fig. 4b), which 
matches the frequency of harmonic vibrations.

The transition from stick-slip to inertial vibrations and the fre-
quency of the inertial vibrations should be dependent on rock den-
sity. We, therefore, ran simulations with different densities (figure 
S2). The lower density simulation is similar to the higher density 
case in the stick-slip regime but with a higher peak slip rate and 
shorter event duration (figure S2a). At velocity Vl = 0.4 mm/s, the 
lower density case is still in the stick-slip regime, but the higher 
density case is in the inertial vibration regime (figure S2b). The 
low-density case results in inertial vibration at Vl = 0.8 mm/s 
(figure S2c), with frequency of ∼ 3 Hz, which is ×2 larger than 
high-density case, and is close to the estimated value of 3.18 Hz 
based on equation (20) (G = 30 GPa, ρ = 500 kg/m3) (figure S20).

The theoretical frequency expressed by equation (20) is further 
verified by varying the fault length and shear modulus (Fig. 5). 
The frequencies of the vibrations observed in the simulation (black 
markers) match well the predicted values (red lines). The frequen-
cies corresponding to the fundamental mode (mode 1) generally 
increase with velocity. Furthermore, we see that higher modes are 
excited at high velocity (Vl = 6 × 10−4) for long fault patches 
(L > 1500) in the lower shear modulus case (Fig. 5b). These fre-
quencies correspond to the second and third harmonics of the 
fundamental mode, as seen in Figs. 5 and 6. In the higher modes, 
the fault length is equal to multiples of the half wavelength of the 
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Fig. 5. Frequency of inertial vibration simulation results. Stick-slip results are excluded. See Figure S6-S23 for the entire simulation results. Red lines denote equation (20)
(mode 1) and its multiples (×2 for mode 2 and ×3 for mode 3). The frequencies are calculated from velocity curves between 13-19 s. The higher mode vibrations shown at 
a high loading rate in softer medium (blue circles in b) are presented in Fig. 6.

Fig. 6. Mode 1 (a), mode 2 (b) and mode 3 (c) inertial vibrations. The simulation parameters for each case are denoted in Fig. 5 (Fig. 5b blue circles). Left panels show 
spatial evolution, middle panels show temporal evolutions at the central fault patch (at 10 km in the left panels), and right panels show snapshots of the velocity field for 
the vibrations (see also supplementary videos S3-S5). We tested simulation (c) with finer grid size to test grid size effect on high mode vibration development and obtained 
nearly identical results (figure S3).
shear waves patch (i.e., ×2 and ×3) (Fig. 5 mode 2 and 3 red lines, 
Fig. 6).

We can derive the equivalent mass per unit area M for the 
inertial vibration simply by equating the two expressions for the 
fundamental frequency (equations (9) and (20)). Given the expres-
sion for the equivalent stiffness K (equation (12)), we get:

M = αρL

π2
(21)

This is essentially identical to the lumped mass expression derived 
from the 1D stability analysis (equation (14)).

4.2. Boundary element simulations

4.2.1. Influence of normal stress and loading rate
We use the boundary element method to conduct simulations 

at various normal stresses and loading rates spanning the κc = 1
7

and η = 1 boundaries (Fig. 7). The sensitivity of the model to 
these parameters is analogous to the sensitivity observed with the 
spring-and-slider system (Fig. 1). The same four domains are ob-
served depending on whether sliding is stick-slip (κc > 1) or stable 
(κc < 1), and on whether inertial vibrations are excited (η > 1) 
or not (η < 1) (Figs. 7 and 8). For example, the simulations cor-
responding to Figs. 8a and 8b, in the domain where κc > 1 and 
η < 1, show clearly a stick-slip behavior and no visible inertial 
vibrations. Inertial vibrations are excited if the effective normal 
stress is low enough or the velocity is high enough to yield η > 1, 
as happened in the simulations corresponding to Figs. 8f, 8h, and 
8i. Fig. 8h confirms that temporal inertial vibration can emerge 
with moderate velocity perturbation if normal stress is low enough 
even if κc < 1. So κc > 1 is not a strict requirement for inertial vi-
brations.

Despite the general similarity, we observe a substantial differ-
ence between the boundary elements and the spring-and-slider 
simulations. In the case of κc > 1 and η � 1, the amplitude of 
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Fig. 7. Loading velocity and normal stress in the lumped-mass boundary element 
simulations of Fig. 8 with the contour of κc = 1 and η = 1 assuming shape factor 
α = 1. The simulations are labeled according to the panels of Fig. 8. We used defi-
nition of κc = 1 and η = 1 defined at spring slider system (i.e., equation (4) and (7)) 
with equivalent K (equation (12)) and input parameter M = 450000 kg/m2 (which 
is calculated based on equation (21)). Simulation results with higher velocities are 
presented in figure S4.

the vibration attenuates with time (Fig. 8i) while it is stationary 
in the spring-and-slider simulation (Fig. 1j). The attenuation in the 
boundary elements simulations seems associated with the devel-
opment of multi-mode vibrations. Since the mechanical energy of 
a wave is proportional to (frequency × amplitude)2, higher mode 
(i.e., higher frequency) vibration should have a lower amplitude 
at the same energy radiation rate. The amplitude attenuation at 
higher mode can be observed in our fully dynamic simulations 
(e.g., Figs. 6b&c, figure S16). When the loading velocity is increased 
further, the simulations yield multi-mode vibrations (figure S4b) 
or faster-attenuating vibrations (figure S4c&d). We indeed observe 
a larger contribution of high-frequency components for the simu-
lation with a higher loading rate (figure S5 blue). We hypothesize 
that the attenuation results from a transfer of energy from the fun-
damental mode to higher modes.

The dominant frequency of the inertial vibration is very close 
of the expected value of 1.5 Hz (figure S5) estimated from equa-
tion (9). We indeed obtain 1.5 Hz for G = 30 Gpa, ν = 0.25, L =
1 km and assuming α = 1, given that the lumped stiffness is K =
40 MPa/m (equation (12)), and lumped mass M = 450000 kg/m2

(equation (21)).

4.2.2. Joint simulation of slow slip and inertial vibrations
Fig. 9 shows that, as expected, our set-up results in sponta-

neous slow slip events and inertial vibrations radiated by the patch 
with locally low effective normal stress. The chosen model pa-
rameters result in slip events with ∼100 days recurrence interval. 
Interestingly, two different types of events are alternating (Fig. 9a).

Type (i) events are associated with tremor (at ∼180, ∼380 day), 
and type (ii) events are not (at ∼80, ∼280 day). Both types nu-
cleate at the stable/unstable boundary (2, 8 km) and propagate 
toward the center (Fig. 9). The inward propagating slow slip events 
propagate at a velocity of ∼10-20 km/day (Fig. 9b). The slip rate 
is of the order of a few micrometers per second. During type 
(ii) events, slow slip fades out before reaching the central patch 
(Fig. 9c). By contrast, slow slip during type (i) events reaches the 
center inducing inertial vibration of the central patch of low nor-
mal stress and a re-rupture of the fault by a pulse of slow-slip, 
which propagates outward, away from the resonating central patch 
(Fig. 9b).
8

A strong inertial vibration is associated with the slow slip at 
the central low normal stress anomaly (Fig. 10). The vibration is 
initiated at the beginning of the velocity increase and attenuates 
with time. Considering that the vibration patch size (400 m) and 
assigned M (180000 kg/m3) are smaller than that of Fig. 8 simu-
lations (1 km and 450000 kg/m3), the system is in the attenuating 
tremor zone (κc < 1 and η > 1) since sustained vibration (κc > 1
and η > 1) requires larger velocity than the simulated slip rate 
(< 100 μm/s). This shows that κc > 1 is not required, but the 
tremor can emerge whenever normal stress is low enough.

5. Discussion

Our study shows that inertial vibrations can be excited by slow 
slip events. In the case of a single-degree-of-freedom spring-and-
slider system, the inertial vibrations can be excited by frictional 
sliding if η = M V 2/σ ′aDc � 1. We recall that this condition is only 
approximative and not derived from a rigorous stability analysis. 
Note that the instability condition (κc > 1) is not required since 
inertial vibrations can still emerge but would attenuate with time 
(Fig. 1). Therefore, the potential for inertial vibration is enhanced 
when the loading rate, Vl , is temporarily increased and effective 
normal stress σ ′ is low. These two conditions could be met on a 
fault patch with high pore pressure during slow slip events. Our 
model thus provides a possible explanation of tectonic tremors as-
sociated with slow slip events in subduction zone settings or on 
continental faults.

Tremor emergence in 1-D fault is primarily controlled by σ ′
and Vl , but the sensitivity to fault size L is less straightforward to 
assess. The mass of the equivalent lumped-mass simulation is lin-
early dependent on the length L of the resonating patch. Hence, 
an increase in L in 1D fault would increase M and accordingly in-
creases η. One may consider that a large-size fault would then be 
more prone to inertial vibrations. However, an increase in L also 
decreases the stiffness of the system, which also influences vibra-
tion emergence (Im et al., 2019). Note that the inertial number for 
the 1-D fault, q (equation (11)), depends on the density but is in-
dependent of the fault length.

The slip rate and propagation rate in our simulation of ETS are 
of the same order of magnitude as those associated with large 
slow slip events in Cascadia (e.g., Bartlow et al., 2011). The out-
ward propagating slow slip events that are generated together with 
the tremor-like vibrations during type (i) events propagate ini-
tially much faster at a rate of >800 km/day (Fig. 10a). This feature 
is reminiscent of the rapid tremor reversals observed in Cascadia 
(Houston et al., 2011). A proper exploration of that analogy would 
require 2-D simulations and is beyond the scope of this study.

The natural frequency of a fault patch is dependent on its 
length and the shear modulus G , and rock density ρ (equation 
(20)). Accordingly, for values typical of rocks, such as the values of 
G = 30 GPa and ρ = 2400 kg chosen in our simulations, the 1-10 
Hz frequency range of tremor in ETS events (e.g., Beroza and Ide, 
2011) corresponds to a fault length of 170 to 1700 m. It should be 
noted that the duration of slow-slip events in our simulations of 
ETS is much shorter than slow slip events in Cascadia due to the 
small size of the fault generating the slow slip events that were 
chosen to limit the computational cost.

Our model can inherently explain the long-duration non-
impulsive nature of tremor and requires only two conditions, first 
a mechanism allowing for transient aseismic slip and second the 
existence of fault patches with near lithostatic pore pressure – for 
the emergence of tremor during slow slip events. Regarding the 
generation of slow events, we have assumed a friction law with 
a transition from rate-weakening to rate-strengthening at a higher 
slip rate. Other mechanisms have been proposed and could also be 
combined with our mechanism of tremor generation as inertial vi-
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Fig. 8. Lumped mass boundary element simulation results of time-dependent velocity change. Velocity at the center of the unstable zone (dashed line) is separately plotted 
on the right side. Loading velocity and normal stresses in each case are shown in Fig. 7. See Fig. 2c for input parameter distributions.
brations. They include, for example, dilatant strengthening (Segall 
et al., 2010), mixed brittle and viscous rheological properties (Skar-
bek et al., 2012; Lavier et al., 2021), and pressure wave migration 
in an anisotropic viscoplastic shear zone (Yin, 2018). Most impor-
tantly, our model requires the presence of patches of low effective 
normal stress within the zone of transient slip. The fact that fluids 
are released by metamorphic reactions during subduction and the 
natural self-affine roughness of faults (e.g., Brodsky et al., 2016), 
seafloor irregularities due to seamounts and fractures, and litho-
logical heterogeneities (Behr et al., 2018) could be the reason for 
the existence of such patches along with the subduction interface. 
Our analysis implies quasi-harmonic vibrations in the case of a sin-
gle patch of a given size, but heterogeneities in nature would imply 
fault patches of various sizes scattered within the ETS zone. Once 
the loading rate is perturbed by slow slip, the various patches 
with low effective normal stress zone would vibrate at different 
resonance frequencies. Therefore, the collective tremor signal de-
tected at the surface would not be a single harmonic signal but 
could span a broad range of frequencies, as observed in tectonic 
tremor (e.g., Shelly et al., 2007; Schwartz and Rokosky, 2007).
9

We note that our model does not conflict with the existing 
view of tremor as a swarm of low-frequency earthquakes (Shelly 
et al., 2007). This view was also tested using numerical simu-
lations, which considered seismogenic patches embedded within 
stable surroundings (Ando et al., 2012; Luo and Ampuero, 2018; 
Luo and Liu, 2019). In our simulation, the tremor emergence is 
only localized within the high-pressure patch (Fig. 10). Conversely, 
in the non-tremorgenic surrounding area, the initial (< 100 s) slip 
motion can be viewed as a (very) low-frequency earthquake (LFE), 
which propagates as a slow slip at the later stage (Figs. 9 and 10). 
If low-normal-stress zones are scattered within the slow slip zone 
due to the heterogeneity of fault asperity, ETS can also be under-
stood as a swarm of these partly tremor-like, partly LFE-like events 
that eventually evolve toward slow slip. Our model thus provides 
an integrated view of slow slip, LFE, and tremor and shows that 
they are interdependent within ETS events as observed in natural 
examples (Ghosh et al., 2015).

Our tremor model differs from the model of Dmitrieva et al. 
(2013), which assumes a high-frequency stick-slip behavior forced 
by a high slip rate observed in simulations with a quasi-dynamic 
approximation. As we show in section 2.2, the quasi-dynamic ap-
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Fig. 9. Simulation of slow slip events in the case of a central patch with low effective normal stress. (a) Slip-rate with time. (b,c) zoomed-in view of the two types of slow 
slip events (type (i) at time ∼180 day (b), type (ii) at time ∼80 day (c)). Type (i) events are associated with inertial vibrations of the central patch (Fig. 10), but type (ii) 
events fail to reach the center part of the fault and don’t excite inertial vibrations.

Fig. 10. (a) Zoom-in view of the resonance of the central patch during a type (i) event and the reverse propagation of slow slip (see the box in panel b of Fig. 9). (b) Velocity 
profile at the location denoted in panel a. The angularness of the curve in the inset is due to the simulation sampling rate. See Fig. 2d for input parameter distributions.
10
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proximation might not be valid for the high slip rate associated 
with 1-10 Hz frequency unstable slip motion. Stick-slip motion 
consists of alternating short slip-phases and longer stick-phases. As 
the loading rate increases, the frequency of slip-events increases 
because the duration of the stick phase decreases. However, the 
reduction of the slip-phase duration is limited by inertia. As the 
loading rate increases, the duration of the stick-phase reduces, and 
finally, the motion is dominated by the slip-phase, making it a 
high-frequency oscillation of acceleration and deceleration, i.e., in-
ertial vibration.

In the spring-and-slider system, the frequency is strictly lim-
ited to its natural frequency, but this restriction is less strict in 
the 1D fault model. Fig. 5 shows higher modes excitation at high 
velocity. Moreover, even before the higher mode excitation, the 
frequency still continuously increases with the velocity at a given 
fault length. This velocity-dependent frequency drift might partly 
explain the continuous gliding observed in the volcanic tremor 
(e.g., Dmitrieva et al., 2013; Hotovec et al., 2013; MacAyeal et al., 
2008). However, the observed gliding tremor does not seem to 
have the higher mode excitation observed in our simulations. As 
it stands, our model may not explain the strong continuous glid-
ing. However, it is likely that inertia is still essential to explain 
such high-frequency vibrations.

6. Conclusion

Our model shows that inertial vibrations can be excited by slow 
fault slip and that this mechanism could be the cause of tectonic 
tremor. The model is consistent with the characteristics of tremors 
associated with slow slip events at subduction zones. The model 
might also apply to volcanic tremors since it might also be associ-
ated with fault slip (e.g., Dmitrieva et al., 2013).
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