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Gas extraction from the Groningen gas reservoir, located in the northeastern
Netherlands, has led to a drop in pressure and drove compaction and induced seismicity.
Stress-based models have shown success in forecasting induced seismicity in this par-
ticular context and elsewhere, but they generally assume that earthquake clustering is
negligible. To assess earthquake clustering at Groningen, we generate an enhanced
seismicity catalog using a deep-learning-based workflow. We identify and locate
1369 events between 2015 and 2022, including 660 newly detected events not previ-
ously identified by the standard catalog from the Royal Netherlands Meteorological
Institute. Using the nearest-neighbor distance approach, we find that 72% of events
are background independent events, whereas the remaining 28% belong to clusters.
The 55% of the clustered events are swarm-like, whereas the rest are aftershock-like.
Among the swarms include five newly identified sequences propagating at high veloc-
ities between 3 and 50 km/day along directions that do not follow mapped faults or
existing structures and frequently exhibit a sharp turn in the middle of the sequence.
The swarms occurred around the time of the maximum compaction rate between
November 2016 and May 2017 in the Zechstein layer, above the anhydrite caprock,
and well-above the directly induced earthquakes that occur within the reservoir and
caprock. We suggest that these swarms are related to the aseismic deformation within
the salt formation rather than fluids. This study suggests that the propagating swarms
do not always signify fluid migration.

Introduction
Industrial activities, such as gas extraction, wastewater dis-
posal, hydraulic stimulation, geothermal energy production,
carbon dioxide sequestration, and water impoundment from
dams can produce substantial stress changes in the Earth’s
crust that can induce seismicity (Ellsworth, 2013; Grigoli
et al., 2017; Keranen and Weingarten, 2018; Atkinson et al.,
2020; Wu et al., 2022; Moein et al., 2023). The induced earth-
quakes can occasionally reach magnitudes of 5 or above, with
hypocenters that are often shallower than those of natural
seismicity (Hough, 2015), making them capable of damaging
nearby structures (Clayton et al., 2016). Management of the
seismic risks to be within an acceptable level is critical for
successful operations.

Induced earthquakes, which exclude background earth-
quakes driven by tectonics and other natural causes of stress
changes, can generally be grouped into two modes based on
their clustering behaviors. The first mode includes indepen-
dent events that are driven directly by the stress changes

due to the large-scale human activity, whether from changes
in pore pressure as the fluid diffuses (Hubbert and Rubey,
1959; Nur and Booker, 1972) or long-range poroelastic stress
changes (Segall, 1989; Segall et al., 1994; Goebel et al., 2017;
Zhai et al., 2019). These events are expected to follow a
Poisson process, generally nonhomogeneous, with time-vary-
ing rates governed by stress changes (Dempsey and Suckale,
2017; Dahm and Hainzl, 2022; Luu et al., 2022; Smith et al.,
2022; Acosta et al., 2023). The second mode includes the
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clustered events that appear close in space and time with an
independent event and often occur as aftershocks or more
occasionally as foreshocks, as also observed in natural seismic-
ity (Ogata, 1988). Mechanistically, these events are triggered by
stress changes imparted by a previous earthquake rather than
the industrial operations. Aftershocks generally follow well-
known patterns, including the decay of their occurrence rates
with time as a power law (Omori, 1894; Utsu, 1961), and a
scaling in which the largest aftershock is approximately 1.2
magnitude unit lower than the mainshock (Richter, 1958).
Clustered events may occasionally deviate from this well-
defined pattern and occur as enigmatic bursts of small-magni-
tude earthquakes without an identifiable mainshock, referred
to as swarms (Mogi, 1963). They often exhibit migratory pat-
terns (Audin et al., 2002; Hainzl and Fischer, 2002; Chen and
Shearer, 2011) and are a manifestation of underlying aseismic
processes such as spontaneous slow-slip events (Lohman and
McGuire, 2007; Passarelli et al., 2015; Gualandi et al., 2017;
Jiang et al., 2022), fluid pressure diffusion (Shapiro et al., 1997;
Audin et al., 2002; Hainzl and Fischer, 2002; Shelly et al., 2013;
Ruhl et al., 2016; Ross and Cochran, 2021), or a complex
interaction of both (Dublanchet and De Barros, 2021;
Sirorattanakul et al., 2022; Yukutake et al., 2022). Clustering
is generally small in induced seismicity with a proportion of
clustered events generally less than 30% (Zaliapin and Ben-
Zion, 2016; Cochran et al., 2020; Karimi and Davidsen, 2023),
whereas clusters typically represent up to 70% of natural seis-
micity (Zaliapin and Ben-Zion, 2013a). Swarms have also been
observed in the context of induced seismicity for which they
are generally ascribed to fluid migration (Ake et al., 2005;
Baisch et al., 2006; Albaric et al., 2014; Kwiatek et al., 2019).

In this study, we take advantage of publicly available seismic
datasets related to seismicity induced by production in the
Groningen gas field in the northeastern Netherlands (Dost
et al., 2017; Willacy et al., 2019; Oates et al., 2022) to investigate
the degree of clustering and the possible mechanisms involved.
We produce an enhanced seismicity catalog for the region using
a deep-learning-based workflow. The improved catalog reveals
many previously unidentified events, which enables more
extensive statistical analysis of earthquake clusters. The newly
detected events include five distinct swarm sequences propagat-
ing at high velocity between 3 and 50 km/day.

The Groningen Gas Field, Overview of
Previous Studies of Induced Seismicity
The Groningen gas field is the largest in western Europe
(Fig. 1), with an initial gas reserve of approximately 2913
billion cubic meters (BCM; Burkitov et al., 2016). The gas
comprises 85% of methane (CH4), 14% of nitrogen (N2),
and 1% of carbon dioxide (CO2) (Stäuble and Milius, 1970;
Burkitov et al., 2016). The reservoir lies at a depth of between
2.6 and 3.2 km and spans approximately 35 km east–west and
50 km north–south as a part of the Upper Rotlingend Group

composed of interbedded Slochteren sandstone and Ten Boer
claystone units. Its thickness varies substantially from 90 m in
the southeast to 300 m in the northwest. The coal layers, in the
underlying Pennsylvanian Carboniferous limestone, are the
source of the gas. The reservoir is sealed by an overlying thick
and impermeable caprock of anhydrite and evaporite layers of
the Permian Zechstein group, an aquifer toward the north, and
a system of normal faults (de Jager and Visser, 2017). Because
of the limited connection with the surrounding groundwater,
gas extraction has led to significant pressure depletion from
34.68 MPa, close to hydrostatic pressure (Burkitov et al., 2016),
to <10 MPa (Meyer et al., 2023), which resulted in the surface
subsidence of almost 40 cm (Smith et al., 2019).

Although the field has been in production since 1963,
induced seismicity did not start until 1991 (Dost et al., 2017).
From 1991 to 2013, the number of earthquakes increased expo-
nentially, prompting significant efforts to deploy additional
monitoring instruments. The first regional network in opera-
tion since 1995 consisted of eight stations, each with three-
component geophones at four different depth levels (50, 100,
150, and 200 m) and a surface accelerometer. Several upgrades
of the network followed. In a major upgrade late 2014, 59 addi-
tional stations were deployed, significantly improving seismic
activity detection (Dost et al., 2017). Most earthquakes align
well with one of the >1100 normal faults mapped by seismic
techniques that offset the gas reservoir (Visser and Solano
Viota, 2017) and are located primarily within the reservoir
(Willacy et al., 2019) or in the overburden (Smith et al., 2020).
They are thought to be driven primarily by poroelastic stresses
induced by bulk reservoir volume decrease (Bourne et al., 2014;
Dempsey and Suckale, 2017; Candela et al., 2019; Smith et al.,
2022) or by stress concentration around faults offsetting the
reservoir resulting from compaction (Bourne et al., 2014;
Buijze et al., 2017; Van Wees et al., 2018). The largest earth-
quake to date is the 2012 Mw 3.6 Huizinge earthquake, which
sparked public concerns and prompted the regulators to
request ramping down of production and to eventually shut it
down long before exhaustion of the gas reserve (de Waal et al.,
2015; van Thienen-Visser and Breunese, 2015; Muntendam-
Bos et al., 2017).

In recent years, many researchers have developed computa-
tionally efficient models to forecast occurrence rates of induced
seismicity based on stress changes from industrial operations
(Segall and Lu, 2015; Bourne and Oates, 2017; Dempsey and
Suckale, 2017; Bourne et al., 2018; Langenbruch et al., 2018;
Candela et al., 2019; Zhai et al., 2019; Richter et al., 2020;
Candela et al., 2022; Dahm and Hainzl, 2022; Heimisson et al.,
2022; Kühn et al., 2022; Smith et al., 2022; Acosta et al., 2023;
Kim and Avouac, 2023). One major limitation of these stress-
based models is that they do not account for interactions
between earthquakes that may lead to secondary triggering and
appear as clustered events. Although induced earthquakes tend
to have fewer clustered events than natural earthquakes, their
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proportions can be >50% depending on the geological settings,
which is nonnegligible (Zaliapin and Ben-Zion, 2016). A better
understanding of clustering behaviors of induced seismicity can
lead to further improvements in these models.

Data and Methods
Enhanced seismicity catalog generation
The Royal Netherlands Meteorological Institute (KNMI) has
been the authoritative governmental institution responsible
for maintaining a seismicity catalog for the area surrounding
the Groningen gas field since 1995. To supplement the KNMI
catalog, we use a recently developed deep-learning-based
workflow to build an enhanced high-resolution seismicity
catalog (Data S1, available in the supplemental material to this

article) between 2015 and 2022 covering the domain spanning
latitude 53.05°–53.50° N and longitude 6.48°–7.05° E. As
summarized subsequently, the workflow consists of multiple
steps, including phase picking, phase association, earthquake
location, and magnitude estimation.

Figure 1. Map of induced seismicity in the Groningen gas field
from 2015 to 2023 that was detected and located in this study
using a deep-learning-based workflow. Circles show the events
with size representing the local magnitude and color repre-
senting the occurrence time. The black line shows the outline of
the reservoir. Gray lines show the mapped faults. The inset shows
the location of the gas field within Europe. The color version of
this figure is available only in the electronic edition.
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Waveform data from seismic stations in the NL and NR
networks located within our domain are used in this analysis
(Fig. S1). We first apply the PhaseNet automated phase-picking
algorithm based on a convolutional neural network to detect P-
and S-wave arrivals (Zhu and Beroza, 2019). The algorithm
accepts one- or three-component waveform data as input and
outputs a list of timestamped P- or S-wave arrival times
(Data S2). We use the standard model included with the
PhaseNet distribution, which was trained on California data
based on manual picks from seismic analysts at the Northern
California Earthquake Data Center but has been shown to effec-
tively generalize to other regions worldwide, including Hawaii
(Wilding et al., 2023), Italy (Tan et al., 2021), and Arkansas,
United States (Park et al., 2020). The initial iteration of the cata-
log, spanning from mid-2015 to 2018, includes picking from
both surface and borehole seismometers. However, when we
expand the catalog to include the first few months of 2015
and from 2019 to 2022, we only apply PhaseNet to surface sen-
sors for computational efficiency. In addition, for instruments
with a sampling rate greater than 100 Hz, we decimate waveform
data to 100 Hz per PhaseNet requirements. The output from
PhaseNet also has probability labels between 0 and 1, indicating
confidence in the pick. We set a probability threshold of 0.3 and
remove picks below this confidence threshold.

The P- and S-arrival picks are then associated into discrete
earthquake events using the Gaussian Mixture Model
Associator, GaMMA (Zhu et al., 2022). GaMMA probabilisti-
cally assigns clusters of P and S picks to individual sources
based on identified hyperbolic moveouts and iterates those
assignments using the expectation–maximization process.
The main parameters controlling the association process are
the maximum time ε between two picks to be considered as
a neighbor of the other and the scalar P- and S-wave velocity
used to backproject arrivals. Even though GaMMA uses a uni-
form velocity model, it can account for travel-time errors in
backprojection due to 3D variation of the velocity model by
allowing large uncertainty in arrival times during the clustering
stage. We test different parameters and identify the best set of
parameters as those that include the greatest number of events
previously identified by KNMI. The best combination of
parameters uses ε of 3 s, a P-wave velocity of 3.0 km/s, and
an S-wave velocity of 1.8 km/s. With this set of parameters,
GaMMA identifies 709 out of 739 events in the KNMI catalog
over the same spatial and temporal coverage. After the asso-
ciation, we filter out previously unidentified events with fewer
than 5 P or S picks and are left with 2591 events. Finally, we
manually inspect waveforms of all newly identified events and
remove the spurious picks resulting in 1369 events, including
660 newly detected events (Figs. S2, S3).

The events are then located with a modified version of
the Hypocenter inversion with Stein Variational Inference
and physics-informed neural networks (HypoSVI) program
(Smith et al., 2021), adapted to allow for a 3D velocity model.

The velocity model of the Groningen region used in this study
was produced by Nederlandse Aardolie Maatschappij (NAM)
from seismic reflection, seismic refraction, sonic log, and well-
core samples (Nederlandse Aardolie Maatschappij, 2017).
Because HypoSVI inverts for the full posterior distribution
of an earthquake location, the algorithm also outputs associ-
ated location uncertainties. Compared with the KNMI catalog,
we find approximately 40 mismatched events. Most of these
events are located near the edges of the velocity model domain
by both our algorithm and by KNMI. They are most likely
affected by the low number of picks on stations within the
velocity model domain and increased picking errors for arriv-
als with a lower signal-to-noise ratio. To maintain the integrity
of the catalog, we manually assign the locations of these events
to those provided by the KNMI, which can be identified by
their depth of exactly 3 km. Events with picks only from
the surface geophones have larger depth uncertainty, as evi-
denced by several surface-sensor-only events with depths far
from the reservoir. These depths can be considered artifacts
of the data downsampling process. We have also compared
the epicentral (horizontal) locations derived using picks from
all sensors and only from surface sensors. They are largely
unaffected by excluding the picks from the borehole sensors.

Local earthquake magnitudes (ML) are calculated with the
same procedure used by the KNMI (NORSAR, 2018), which
can be calculated using the following equation:

ML � log10 A� 1:33 log10 R� 0:00139R� 0:424, �1�

in which A is the amplitude measurement in millimeters on
a simulated Wood–Anderson seismometer of the deepest
available borehole sensor for a given station and R is the
source–receiver distance in kilometers. The amplitudes are
measured as the peak signal amplitude of the waveform (abso-
lute value). Although it is possible to convert local magnitude
to moment magnitude using the relation derived by Dost et al.
(2018), we restrict our analysis to local magnitude.

Clustering analysis
To analyze the clustering behaviors of seismicity in the
Groningen gas field, we apply the nearest-neighbor distance
approach (Zaliapin and Ben-Zion, 2013a,b) to the enhanced seis-
micity catalog. We consider only events located within the boun-
dary of the Groningen gas field that are larger than the
completeness magnitude (Mc) of 0.5. For each event j in the cata-
log, we search for the preceding event i that is most likely to be
the parent (mainshock) of event j. The proximity distance
between any event pair (i, j) can be quantified using a space–
time–magnitude metric normalized by the magnitude of the
parent event (Baiesi and Paczuski, 2004; Zaliapin et al., 2008)
defined as follows:

ηij � tij�rij�df 10−b�mi−Mc�, �2�
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in which tij � tj − ti is the time between the event pair, rij
is the distance between the epicenters of the event pair, df
is the fractal dimension of earthquake epicenters taken to
be 1.6 (Zaliapin and Ben-Zion, 2013a), b is the Gutenberg–
Richter b-value of the frequency–magnitude distribution,
and mi is the magnitude of event i. Because depth uncertainty
is large, we do not include depths in the proximity distance
calculations for our analysis. However, we tested the effect of
including depths in the analysis (see the Clustering behaviors
section) and find no significant changes to the conclusions
presented in the following sections.

For each event j, the event i� with the smallest proximity
distance ηij is the nearest neighbor and hence most likely to
be the parent of event j. The results can be expanded to
two dimensions as rescaled time Tj and rescaled distance
Rj, defined as follows (Zaliapin and Ben-Zion, 2013a):

Tj � ti�j 10−
b
2�mi�−Mc�,Rj � �ri�j�df 10−b2�mi�−Mc�: �3�

The distribution of nearest-neighbor distance ηj is expected
to be bimodal. The first mode has the independent events rep-
resented by a time-stationary, space-inhomogeneous Poisson
process concentrating along log10 Tj � log10 Rj � constant.
The second mode has the clustered events with considerably
smaller Tj and Rj, constituting foreshock–mainshock–after-
shock sequences and swarms (Zaliapin et al., 2008; Zaliapin
and Ben-Zion, 2013a). The separation between the two modes
can be approximated by a 1D Gaussian mixture model applied
on ηj (Hicks, 2011) using MATLAB fitgmdist function. The
mode separator η0 is chosen to be where the probability density
function of the two modes intersects. We consider events with
ηj ≥ η0 to be independent events and ηj < η0 to be clustered
events (Zaliapin and Ben-Zion, 2013a).

The nearest-neighbor distance approach was originally
analyzed for an epidemic-type aftershock sequence model
(Ogata, 1988) with an assumption that the independent events
follow a time-stationary, space-inhomogeneous Poisson proc-
ess (Zaliapin et al., 2008). In the case of induced seismicity, we
expect the background Poisson rates of independent events to
be inhomogeneous in time as modulated by injection or extrac-
tion rates. To test the effectiveness of the nearest-neighbor dis-
tance approach for induced seismicity and the robustness of
the estimated mode separator η0 a posteriori, we take events
with ηj ≥ η0, create 100 shuffled catalogs by randomly permut-
ing the order of the magnitudes and locations, and calculate
nearest-neighbor distances for events in these shuffled catalogs,
similar to those done in Karimi and Davidsen (2023). Because
the shuffling removes any clusters while preserving the seis-
micity rate and spatial distribution, the distribution of near-
est-neighbor distances of these shuffled events reflects the
true distribution of the independent mode, and hence the
majority of events should have ηj,shuffled ≥ η0 if the chosen
η0 is appropriate. Unlike in Karimi and Davidsen (2023),

by shuffling only events with ηj ≥ η0, we reduce bias of the
clustered events on the temporal rate of independent events.
In principle, we can also completely remove the time clustering
by sampling new times from a uniform distribution (Zaliapin
and Ben-Zion, 2020), but then we would also remove any time-
inhomogeneous nature of the independent events.

Furthermore, we also evaluate the relative variability of the
interevent times distribution using the coefficient of variation
(CoV) defined as the ratio of its standard deviation and its mean.
Random processes (Poissonian) are expected to have CoV in
order of unity. Larger CoV suggests the presence of clustering,
whereas smaller CoV suggests periodic behavior. For a given η0,
the CoV can be used to evaluate whether the independent
events are Poissonian. If the chosen η0 is too small, events with
ηj ≥ η0 would include some clustered events, and hence the CoV
would become significantly greater than one. In contrary to the
shuffling analysis, which evaluates the upper bound of the
appropriate η0, the CoV evaluates its lower bound. Combining
the two metrics effectively allows constraining the range of η0
that characterizes the mode separation.

We additionally use the Schuster spectrum method (Ader
and Avouac, 2013) to verify that, once clustered events are
removed based on the chosen value of the mode separator
η0, the remaining events are consistent with an inhomo-
geneous Poisson process. The method is based on the
Schuster tests (Schuster, 1897), which evaluate the amount
of seismicity rate variations for a given period. By calculating
the Schuster p-value for different periods, we construct a
Schuster spectrum and compare it with the expectation for
a Poisson process. This procedure aids in verification of the
quality of the declustering.

To further study the relationship between events, we create
a spanning tree by connecting each event to its most likely
parent. The strength of each link is inversely proportional
to the nearest-neighbor distance ηj. By removing weak links
with ηj ≥ η0, we create a spanning forest consisting of sin-
gle-event trees with no links and other multievent clusters
(Zaliapin and Ben-Zion, 2013a). The independent events
previously identified include the singles and the first event
from each cluster. We can calculate the average leaf depth
for each cluster by averaging the number of links needed to
connect events without children to the first event or the root
(Zaliapin and Ben-Zion, 2013b). Swarm-like sequences have
large average leaf depths, whereas foreshock–mainshock–after-
shock sequences have small average leaf depths.

Results
Catalog overall properties
Compared to the standard catalog from the KNMI, our deep-
learning-based workflow enables us to increase the number of
detected events between 2015 and 2022 from 739 to 1369. In
total, 709 events from the KNMI catalog were identified by our
workflow, leaving only 30 events unidentified by our method.
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The 1297 events are located within the horizontal extent of
the gas field, which we use for the analysis hereafter.

Despite being automatically generated products, our
events display good agreement in both the locations and mag-
nitudes with the KNMI catalog (Fig. S4). The horizontal loca-
tion differences for events with ML ≥ 0:5 are less than 675 m
on average. Most events with large location differences are
either located near the edge of the available velocity model
or small-magnitude events where arrival picks have large
uncertainty. The magnitude differences are less than 0.1 mag-
nitude unit on average. Only 78 events (12%) have magnitude
differences greater than 0.2 magnitude units. There is one
ML 3 event that is presented in our catalog but not in the
KNMI catalog. Because that event is located close the edge
of the velocity model, the arrival picks may have large uncer-
tainty and bias its location and, therefore, its magnitude. Our
catalog also reports depth rather than a fixed depth of 3 km,
as the KNMI catalog does. In comparison to the catalog by
Willacy et al. (2019), which utilizes full-waveform inversion
to determine the event location, the horizontal location
differences for events with ML ≥ 0:5 decrease slightly to a
mean value of 563 m (Fig. S5). We have refined the depth
determination by including time picks from the borehole
sensors for the time spanning mid-2015 to 2018, during
which we observed a concentration of swarms as detailed
subsequently.

The increase in the detection is consistent across the period
studied. Many new detections are related to small events with
signals close to the noise floor. However, a significant portion
of new detections are the five bursts of small-magnitude

(ML 0.5 – 1.5) swarm-like sequences that double the earth-
quake rates between November 2016 and May 2017 (Fig. 2a),
which we discuss further in the Swarm sequences section. Our
catalog has the completeness magnitude (Mc) of 0.5 estimated
using the maximum curvature method (Wiemer and Wyss,
2000). Here, we do not use the typical correction factor of
0.2 (Woessner and Wiemer, 2005) because it is advantageous
to keep more events for the statistical analysis. The b-value
slope of the frequency–magnitude distribution is determined
to be 0.86 by applying the b-Positive method (van der Elst,
2021) to all events with a conservative minimum magnitude
difference of 0.2 (Fig. 2b). The b-Positive method does not
require a complete catalog. With these additional events, the
enhanced catalog can unlock new insights into the clustering
behaviors of earthquakes in the Groningen gas field.

Figure 2. Enhanced seismicity catalog. (a) Comparison between
our enhanced seismicity catalog and the standard catalog from
the Royal Netherlands Meteorological Institute (KNMI). The top
panel compares the number of detected events per month. The
middle panel shows the distribution of event magnitude versus
time for the enhanced catalog. The red circle highlights the five
newly detected swarm sequences. The bottom panel is the same
as the middle but for the KNMI catalog. (b) Frequency–magni-
tude distribution from the two catalogs. The dashed line rep-
resents the Gutenberg–Richter exponential distribution with the
b-value slope of 0.86 estimated from the enhanced catalog using
the b-Positive method (van der Elst, 2021). The completeness
magnitude (Mc) of the enhanced catalog is estimated to be
approximately 0.5. The color version of this figure is available only
in the electronic edition.
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Clustering behaviors
The nearest-neighbor distance approach is applied to 726 earth-
quake epicenters in the enhanced catalog with ML ≥ 0:5. The
distribution of nearest-neighbor distance ηj expanded in the
form of rescaled time Tj and rescaled distance Rj is shown in
Figure 3a. By fitting ηj with a 1D Gaussian mixture model,
we find the best-fit mode separator of log10 η0 � −3:05. We find
that 522 events (72%) are independent, whereas the remaining
204 events (28%) appear to be clustered (Fig. 3b).

The 2D probability distributions of nearest-neighbor distan-
ces of the 100 shuffled catalogs are averaged and shown in
Figure 3c. Because the rate of independent events vary only
gradually during this period, their distribution similarly concen-
trates along a line with log10 Tj � log10 Rj � constant with
almost all reshuffled events (93%) having ηj ≥ η0, validating the
approach and the chosen mode separator. The results are quali-
tatively similar if the earthquake hypocenters are used instead
of the epicenters, accounting also for the depths (Fig. S6).
Furthermore, the independent events (those with ηj ≥ η0)
have CoV of approximately one, consistent with them being
Poissonian. If we were to choose η0 < −4, events with ηj ≥ η0
include clusters as CoV becomes significantly greater than one
(Fig. S7).

The Schuster spectrum calculated for the nondeclustered
catalog shows p-values lower than those expected from a
Poisson process starting from periods of about 2–3 days
and larger (Fig. S8a). This pattern shows that the catalog con-
tains clusters (Ader and Avouac, 2013), and we can infer they
have durations of at least a few days. However, if we use only
the independent events, the drifting low p-values disappear
(Fig. S8b), further validating the choice of the value of the
mode separator chosen.

We proceed to analyze the spatiotemporal evolution of the
events from each of the two modes (Fig. 4). The independent
events align well with the mapped faults and show a seismicity
rate that gradually changes with time. On the other hand, the
clustered events show multiple lineations that do not align with
the mapped faults and occur as short-duration bursts of events
in time. The most prominent clusters are the five bursts of
small-magnitude (ML 0.5–1.5) swarm-like sequences occurring
between November 2016 and May 2017 (Fig. 2a). The others
appear to be aftershocks of the larger ML > 2 events. By con-
struct, if a sequence has a foreshock, the mainshock will be
identified as a clustered event rather than an independent
event because the foreshock would be its parent, which
explains why some of the larger events are identified as
clustered.

The spanning tree created by connecting each event with its
nearest neighbor if ηj < η0 reveals 448 single-event clusters
(62% of clustered events) and 73 multievent clusters (38%
of clustered events). Their detailed statistics are shown in
Figure 5. The average size of the multievent clusters is 3.8
events with a standard deviation of 3.6 events. The large

Figure 3. Nearest-neighbor clustering analysis performed on our
enhanced seismicity catalog with ML ≥ 0:5. Only epicenters are
used, and the fractal dimension (df ) is taken to be 1.6. (a) A joint
2D distribution of the rescaled time and rescaled distance. Each
of the black dots represents the proximity of each event to a
parent event. (b) Histogram of the nearest-neighbor proximity
distance with curves showing the two Gaussian distributions
representing the two modes derived from the 1D Gaussian
mixture model. (c) The average joint distribution of the rescaled
time and rescaled distance derived from 100 catalogs created
from reshuffling locations and magnitudes of independent
events. The diagonal white dashed lines in panels (a) and (c) and
the black vertical dashed line in panel (b) mark the mode sep-
arator (η0 � 10−3:05) used to perform binary classification of
events into either independent or clustered. The color version of
this figure is available only in the electronic edition.
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standard deviation reflects significant variations in cluster size.
All earthquakes with ML > 2:5 are a part of multievent clus-
ters, with the number of events in the cluster growing with
mainshock magnitude. On average, the largest aftershock is
1.5 magnitude unit lower than the mainshock, in line with
those expected from Båth’s law (Richter, 1958). The average
leaf depth of these aftershock sequences is 1.3, indicating
that most of the events are triggered by the mainshock rather
than being aftershocks of aftershocks. On the other end
of the spectrum, there are multievent clusters that exist as
swarm-like sequences without a clearly identifiable mainshock
(Mmainshock −Mlargest aftershock ≪ 1, contradicting Båth’s law)
and a larger value of average leaf depth (dleaf ) of up to 8.7.
For an earthquake sequence with an average of two aftershocks
for each earthquake, the cluster size (nclust) would then be
2dleaf . Therefore, this motivates using dleaf of log2 nclust as a
cutoff for binary classification between swarm-like and after-
shock-like clusters. Considering only clusters with at least five
events, we find seven swarm-like clusters (dleaf ≥ log2 nclust)
with a total of 77 events (55% of clustered events) and 9 after-
shock-like clusters (dleaf < log2 nclust) with a total of 64 events
(45% of clustered events). The analysis suggests that the clus-
tered events are slightly dominated by swarm-like sequences.
Among aftershock-like clusters, the events are 16% foreshocks,
14% mainshocks, and 70% aftershocks.

Swarm sequences
There were five noticeable swarm-like clusters between
November 2016 and May 2017, each lasting 1–5 days and con-
sisting of 10–20 events, with ML ranging from 0.66 to 1.56
(Fig. 6). Outside of this period, we did not find any other

noticeable swarm clusters. Upon further investigation of their
kinematics, all swarms migrate with velocities ranging from
3 to 50 km/day. We numbered the swarms from 1 to 5 based
on the order that they occurred. The migration occurred along
one single direction for swarms 1 and 2 and two different
orthogonal directions for swarms 3–5. For swarms 3 and 4,
there exist also ∼15 hr pauses with no events before the migra-
tion direction switches. The migration directions do not follow
mapped faults or other known features of the reservoir.
Although there are not enough events to determine the exact
shape of the migration front, it is possible to model them with
�����������

4πDt
p

, in which D would be an apparent hydraulic diffusivity
and t is the time. In the case of fluid-driven swarms, the fitted
D would be related to the hydraulic diffusivity of the fault
zones (Shapiro et al., 1997), though with a conversion factor
that accounts for the time delays associated with earthquake
nucleation (Kim and Avouac, 2023). The swarms in our
study have D ranging from 70 to 800 m2=s, much larger than
a commonly accepted range for fluid-driven swarms of
0:005–10 m2=s (Amezawa et al., 2021). In comparison to other
swarms around the world, the scaling between migration veloc-
ity and duration places them closer to slow-slip events and
swarms driven dominantly by slow-slip events than other

Figure 4. Distribution of independent versus clustered events for
ML ≥ 0:5 from our enhanced seismicity catalog. (a) Spatial dis-
tribution of events color-coded by the mode they belong to.
(b) Magnitude and cumulative number of events versus time
distribution of the independent events. (c) Same as panel (b) but
for clustered events. The color version of this figure is available
only in the electronic edition.
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injection-induced swarms (Danré et al., 2022). Fluid may trig-
ger subsequent aseismic slip that expands faster than fluid
itself, resulting in much larger apparent diffusivity than the
hydraulic diffusivity of the fault zone (Sáez et al., 2022). We
further discuss possible drivers for these swarms in the
Possible drivers of swarm-like sequences section.

Another interesting observation is that the swarms occurred
at a depth of between 1.5 and 2.5 km. While there could be
some uncertainty with the absolute depth locations, they are
certainly located toward the shallower side when compared
to other earthquakes that are generally thought to be located
near the top of the reservoir (Willacy et al., 2019; Smith et al.,
2020). As a result, this would place them in the 1–2 km thick
Zechstein evaporite (salt) above the anhydrite caprock, well
above the gas reservoir (Fig. 7).

Discussion
Comparison of clustered fraction with other
studies
Induced earthquakes are known to have a lower proportion
of clustered events than naturally occurring tectonic earth-
quakes due to high driving stresses from anthropogenic activ-
ities in comparison to tectonic loading (Schoenball et al., 2015;
Zaliapin and Ben-Zion, 2016; Cochran et al., 2018; Martínez-
Garzón et al., 2018). Here, we compile in Table 1 the clustered
proportion of seismicity from different regions as reported by
previous studies. We find that the clustered events can account
for up to 70% of naturally occurring tectonic earthquakes
but no more than 30% of induced earthquakes. The estimate
of 28% from this study places the Groningen gas field well
within the range estimated for other induced seismicity set-
tings. Other studies on the clustered proportion of seismicity
from the Groningen gas field provide different estimates of
the clustered proportion varying from a few percent up to
27%, which are generally lower than the 28% that we report
here (Candela et al., 2019; Muntendam-Bos, 2020; Post et al.,
2021; Trampert et al., 2022). Among those that also use the
nearest-neighbor distance approach, Candela et al. (2019)
found 18% of clustered events between 1993 and 2016, while
Muntendam-Bos (2020) finds only 6% of clustered events
between 1995 and 2018, but the proportion increases to
22% if consider only the period between 2014 and 2018. On
the other hand, Post et al. (2021) use the statistics of the inter-
event times and find a larger value of 27% for the clustered
proportion. The scatter of the clustered proportion identified
by the different studies can be attributed to various factors,
including but not limited to a variation of earthquake rates
and clustering behaviors with time (Trugman et al., 2016;
Martínez-Garzón et al., 2018; Muntendam-Bos, 2020), the
accuracy of earthquake locations (Muntendam-Bos, 2020),
and the five swarm sequences occurring between November
2016 and May 2017 that were not previously identified other
seismicity catalogs, and the cutoff magnitude employed

Figure 5. Statistics of the identified clusters. (a) Cluster size
(number of events) versus magnitude of the largest event color-
coded by the magnitude difference between mainshock and
largest aftershock. Black circles denote the case with only one
event in the cluster or when the largest earthquake is the last one
in the sequence. Panel (b) is the same as (a) but color-coded by
the average leaf depth. (c) A schematic showing aftershock-like
and swarm-like sequences. The aftershock-like sequence has a
smaller average leaf depth than the swarm-like sequence, but
each event produces more offspring. The color version of this
figure is available only in the electronic edition.
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(Zaliapin and Ben-Zion, 2013a). By removing the five swarms,
our estimate of the clustered proportion becomes 19%, which
is almost equivalent to the estimate from Candela et al. (2019).
We also calculate the clustered proportion using the different
cutoffs and find that the clustered proportion generally
decreases with a larger cutoff and becomes stable between
18% and 20% as the cutoff exceeds ML of 1.2 at which the five
swarm sequences are excluded from the analysis (Fig. 8).

Possible drivers of swarm-like sequences
Although the migration of swarms in the Groningen gas field
can be modeled with a square root of time typically associated
with fluid pressure diffusion (Shapiro et al., 1997), fluid is
unlikely to play any dominant role for the following reasons.
First, the migration direction should be along the maximum
spatial pressure gradient, which follows the spatial derivative
of the compaction rate. This contradicts the observations in
which the migration direction seems to align more along
the contours of constant compaction (Fig. 9a). Second, the
migration velocity is on the order of 10 km/day, which requires

a much higher hydraulic diffusivity than the values typically
expected for fluid-driven swarms (Amezawa et al., 2021).
Third, while fault slip can enhance permeability, allowing
for faster diffusion rates, the migration directions do not follow
mapped faults or any known structures. There may be other
unmapped faults that the migration follows because there
are focal mechanisms with fault planes not orienting along
the mapped faults (Willacy et al., 2019). Nevertheless, because
the swarms are located in the Zechstein salt well above the
impermeable anhydrite caprock that allows the gas to be pre-
served for millions of years (Fig. 7), the faults in the Zechstein

Figure 6. Fast propagating earthquake swarms. (a) Magnitude
versus time of the five distinct bursts of swarm-like sequences.
Panels (b–f) show the spatiotemporal evolution of these five
swarms. The white stars mark the second event in swarm 2 and
the first event in all other swarms. The dashed lines show the
predicted expansion for the different values of apparent hydraulic
diffusivity D. The color version of this figure is available only in the
electronic edition.
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layer are probably not hydraulically connected to the reservoir
and are most probably located in the anhydrite fragments that
are embedded within the Zechstein evaporite rather than in the
evaporite itself, which cannot support brittle fractures due to
its viscous nature. Hence, the swarms cannot be driven by
direct fluid contact.

Besides fluids, cascading earthquakes can create an apparent
diffusive expansion front (Helmstetter and Sornette, 2002).
However, the swarms consist of only small ML 0.5–1.5 events,
which would correspond to a rupture dimension of ∼15–40 m,
much smaller than the average distance of ∼1 km between
events (Fig. 6). Although there could exist a chain of smaller
undetectable events that connect the larger ones, this is
unlikely as our deep-learning-based workflow should be able
to detect some swarm events below ML 0.5 (Fig. 2); but we
detect none. Therefore, cascade triggering is also unlikely.

These swarms occurred just after the period of accelerated
compaction (Fig. 9b), suggesting that they might be related
to the large strain rate from such a period that could trigger
swarms in the Zechstein layer above the reservoir. However,
because the compaction rate seems to be more correlated with
the rate of independent events rather than the rates of all events
(Fig. S9), some additional mechanisms are required to connect
compaction to the swarms. Although seismic events in the
salt are rare because salt is highly ductile, they can occur in case
of large strain rates, for example, related to the collapse of min-
ing cavities (Kinscher et al., 2016) or fault creep (Barnea Cohen
et al., 2022), or in relation to fluid injection (Lei et al., 2019).
Alternatively, these events could also occur within the anhydrite
fragments embedded in the salt (Spetzler and Dost, 2017).
Because there are no mining activities in the Zechstein layer and
the faults in this layer are most probably not hydraulically con-
nected to the reservoir, propagating episodes of aseismic defor-
mation are the most probable mechanisms. Although there are

no detectable geodetic signals in either the GPS, InSAR, or the
fiber-optic borehole strains (Oates et al., 2022) during the time
of the swarms, aseismic creep may be located too deep or too
small to be detected. Swarms that are driven by aseismic slip
generally propagate at high velocity in the order of kilometers
per hour (Lohman and McGuire, 2007; Sirorattanakul et al.,
2022) and can have a square root of time migration (Sáez et al.,
2022), which is consistent with the observations of the
Groningen swarms. The aseismic fault creep could occur within
the fragments of anhydrite embedded in the Zechstein evaporite.
Such creep can be driven by the long-range poroelastic stress
changes incurred by pore-pressure changes in the reservoir.
Poroelastic effects are indeed needed to explain both the surface
subsidence and the induced seismicity at Groningen and are
therefore explicitly included in most models (Bourne et al., 2014;
Buijze et al., 2017; Dempsey and Suckale, 2017; Candela et al.,
2019; Smith et al., 2022). Alternatively, aseismic fault creep may
be driven by stress induced by bulk creep in the surrounding
Zechstein evaporite as the salt redistributes, possibly in response
to the disturbances from the historic gas production. Because
these swarms are not driven directly by stress changes from the
industrial operations, they are not yet accounted for in induced
seismicity forecasting models for the Groningen gas field.

Figure 7. Depth distribution of earthquakes with ML ≥ 0:5 from
our enhanced seismicity catalog with colors identifying whether
they are independent, fast propagating swarms shown in
Figure 6, or other clustered events, along with a schematic
showing a depth cross-section of the lithologies taken from
Smith et al. (2019). Only the time period when we have picks
from both the surface and borehole sensors is shown. The five
swarm sequences are located in the Zechstein evaporite. The
color version of this figure is available only in the electronic
edition.
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Conclusions
By applying a deep-learning-based workflow for earthquake
detection to seismic data from the Groningen gas field, we
identify and locate a total of 1369 events from 2015 to 2022,

almost two times more than
the standard KNMI catalog.
Despite being automatically
generated products, the loca-
tions and magnitudes of the
overlapping events display a
high degree of similarity with
the KNMI catalog. Analysis of
the nearest-neighbor distance
reveals that the clusters account
for 28% of all events. Among
the clustered events, approxi-
mately half are swarm-like
clusters, whereas the remaining
half are aftershock-like clusters.
The swarm-like clusters include
five distinct swarm sequences
that migrate at remarkably
fast velocities between 3 and
50 km/day along directions that
do not follow mapped faults or

existing structures and frequently exhibit a sharp turn in the
middle of the sequence. Based on the observations of fast veloc-
ities and their depths in the Zechstein salt above the reservoir
caprock, the swarms are most likely not driven by fluids but

Figure 8. Variations of the clustered proportion for the different cutoff magnitude. The dashed line
shows the number of events larger than or equal to a given cutoff magnitude. The color version of
this figure is available only in the electronic edition.

TABLE 1
A Compilation of Clustered Fraction of Seismicity from Different Regions

Region
Type of
Seismicity

Magnitude
Cutoff

Clustered
Fraction

Southern California (Zaliapin and Ben-Zion, 2013a) Mostly tectonic 2 0.70

San Jacinto fault zone, California, United States (Zaliapin and Ben-Zion, 2016) Tectonic 1 0.34

Coso geothermal field, California, United States (Zaliapin and Ben-Zion, 2016) Mixed 1 0.44

Salton Sea geothermal field, California, United States (Zaliapin and Ben-Zion, 2016) Mixed 1.5 0.69

Geysers geothermal field, California, United States (Zaliapin and Ben-Zion, 2016) Induced 1.0 0.17

TauTona gold mine, South Africa (Zaliapin and Ben-Zion, 2016) Induced 1.5 0.12

Saltwater disposal, Oklahoma (Cochran et al., 2020) Induced 0.95 0.30

Hydraulic fracturing in western Alberta, Canada (Karimi and Davidsen, 2023) Induced 0.2 0.25

Groningen gas field, Netherlands, KNMI catalog (Candela et al., 2019) Induced 1.0 0.18

Groningen gas field, Netherlands, KNMI catalog (Post et al., 2021) Induced 1.3 0.27

Groningen gas field, Netherlands, KNMI catalog between January 1995
and January 2019 (Muntendam-Bos, 2020)

Induced 1.2 0.06

Groningen gas field, Netherlands, KNMI catalog between May 2014
and January 2019 (Muntendam-Bos, 2020)

Induced 1.2 0.22

Groningen gas field, Netherlands, enhanced catalog (this study) Induced 0.5 0.28

Groningen gas field, Netherlands, enhanced catalog (this study) Induced 1.2 0.21

With the exception of Post et al. (2021), which utilizes the statistics of interevent times, all other studies utilized the nearest-neighbor distance approach (Zaliapin et al., 2008;
Zaliapin and Ben-Zion, 2013a). KNMI, Royal Netherlands Meteorological Institute.
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rather by other aseismic processes such as propagating aseismic
creep. The magnitude of these swarms is within the detectable
range of the KNMI catalog, but they were not previously iden-
tified and reported. With a better catalog, we can enhance our

understanding of the mechanics
of earthquake clusters and
allow us to better incorporate
their contributions to seismic
hazards into induced seismicity
forecasting models and their
associated uncertainties
(Kaveh et al., 2023).

Data and Resources
Raw seismic waveforms were
accessed through the
Observatories and Research
Facilities for European Seismology
(ORFEUS) International
Federation of Digital Seismograph
Networks (FDSN) client via a
Python script using the package
ObsPy (https://docs.obspy.org/;
Beyreuther et al., 2010). The 3D
seismic velocity and faults map
were provided to us by Shell
Global Solutions International
B.V. Computer programs used to
generate the enhanced seismicity
catalog are previously published
and can be found in the following
references: seismic phase detection
software PhaseNet (https://
github.com/AI4EPS/PhaseNet;
Zhu and Beroza, 2019), seismic
phase association software
GaMMA (https://github.com/
AI4EPS/GaMMA; Zhu et al.,
2022), hypocenter inversion soft-
ware HypoSVI (https://
github.com/Ulvetanna/HypoSVI;
Smith et al., 2021). The seismicity
catalog from the Royal
Netherland Meteorological Survey
(KNMI) is available online at
www.knmi.nl. MATLAB version
2020a was used to analyze data
and prepare figures. The enhanced
seismicity catalog generated in this
study along with the picks of arrival
times can be found in the supple-
mental material. Codes used for
data analysis and figure generation
are made available online through
CaltechDATA repository at
https://data.caltech.edu/records/

emasj-np244. All websites were last accessed in March 2024. The sup-
plemental material for this article includes supplemental figures,
enhanced high-resolution seismicity catalog (data S1), and the associ-
ated picks of P- and S-wave arrival times (data S2).

Figure 9. Comparison of the swarms with reservoir compaction. (a) Spatial distribution of modeled
reservoir compaction between 2016 and 2018. The calculation is done using a simple expression
C � Cm × ΔP × h relating compaction C with the compressibility Cm from Smith et al. (2019)
constrained with geodetic data, pressure depletion ΔP from Acosta et al. (2023) calculated using a
simplified reservoir model from Meyer et al. (2023) constrained with pressure measurements from
the borehole sensors, and the reservoir thickness h. The circles with different colors denote the five
different swarms shown in Figure 6. (b) Average compaction in the reservoir versus time. The
vertical lines denote the timing of the five swarms. The inset shows a zoomed-in during the time of
swarms. The color version of this figure is available only in the electronic edition.
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