
1. Introduction
Numerous activities related to the decarbonization, or security of energy production involve managing subsur-
face reservoirs (geothermal, CO2 sequestration, hydrogen storage, conventional, and unconventional oil-and-gas 
extraction). Induced earthquakes are a major obstacle to these activities (Candela, et al., 2018; Ellsworth, 2013; 
Goebel & Brodsky, 2018; Grigoli et al., 2017; Kaven et al., 2015; Raleigh et al., 1976; Shirzaei et al., 2016; Walsh 
& Zoback, 2015; Zhai et al., 2019) raising the need for improved methods to forecast induced seismicity. The 
modern understanding that earthquakes result from unstable frictional fault slip (Scholz, 2019) provides a foun-
dation to forecast changes of earthquake rate in response to stress changes, ΔS (Bourne & Oates, 2017a, 2017b; 
Bourne, et al., 2018; Dahm & Hainzl, 2022; Dempsey & Suckale, 2017, 2023; King et al., 1994; Kühn et al., 2022; 
Langenbruch et al., 2018; Richter et al., 2020; Zhai et al., 2019). The approach requires a model of earthquake 
nucleation and knowledge of the stress change needed to initiate it (strength excess). At its simplest, the stand-
ard Coulomb friction model, CF, assumes that unstable fault slip initiates instantaneously when the ratio of 
shear stress to effective normal stress exceeds the static friction coefficient. In this context, the often-observed 
lagged response of the seismicity to stress changes can be modeled through an initial strength excess (Bourne 
& Oates, 2017a, 2017b). While the CF approach has been found satisfying in several case studies (Bourne & 
Oates, 2017a, 2017b; Bourne, et al., 2018; Dempsey & Suckale, 2017, 2023; Smith et al., 2022), this model 
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neglects that earthquake nucleation might not be instantaneous, as evidenced by laboratory experiments 
(Dieterich,  1994) and the weak correlation of earthquakes with solid Earth tides (Beeler & Lockner,  2003; 
Cochran et al., 2004). Some models have introduced an ad-hoc critical time-to-failure (Dahm & Hainzl, 2022; 
Zhai et al., 2019) to account for either the initial strength excess or non-instantaneous nucleation. A more phys-
ical way to account for the finite duration of the nucleation process consists in assuming that nucleation is 
governed by rate-and-state friction, RS, (Dieterich, 1994), a model adopted with success in a number of studies 
(Candela et al., 2019, 2022; Langenbruch et al., 2018; Richter et al., 2020). Discriminating between the CF and 
RS models has however proven elusive (Dempsey & Suckale, 2023) due to the lack of observational constraints 
on the nucleation process, and the eventual trade-off between the initial strength excess and the nucleation time. 
The CF and RS models yield very different forecasts if stress changes occur at short timescales compared to the 
characteristic time of the nucleation process (Heimisson et al., 2022), and the nucleation process might therefore 
be revealed from the seismicity response to large amplitude, short-timescale stress variations (Ader et al., 2014). 
Here we demonstrate that the nucleation process is not instantaneous and derive constraints on its characteristic 
timescales, fault friction parameters, and the initial strength excess by studying seismicity induced by gas extrac-
tion from the Groningen field, where strong seasonal variations of gas production (Figures 1a and 1b) generated 
significant seasonal seismicity variations.

The Groningen gas field in northeastern Netherlands (Figure 1a) is an ideal example to study induced seismicity 
due to well-known reservoir properties (Burkitov et al., 2016; de Jager & Visser, 2017; Oates et al., 2022), detailed 
seismicity catalog (Dost et al., 2017; Smith et al., 2020; Willacy et al., 2018), and well-resolved surface subsidence 
(Smith et al., 2019; van Thienen-Visser & Breunese, 2015). Together, these data have allowed for calibration of 
models used to hindcast and forecast induced seismicity (Bourne & Oates, 2017a, 2017b; Bourne et al., 2014, 2018; 
Buijze et al., 2017; Candela et al., 2019, 2022; Dahm & Hainzl, 2022; Dempsey & Suckale, 2017, 2023; Heimisson 
et al., 2022; Kühn et al., 2022; Meyer et al., 2022; Richter et al., 2020; Van Wees et al., 2017). Gas is extracted 
from a thin, laterally extensive (∼100–300 m thickness for ∼30*50 km horizontal dimension), porous and perme-
able (∼15%–20% porosity, ∼3.55E−13 m 2 permeability (de Jager & Visser, 2017; Meyer et al., 2022)) reservoir 
hosted in the Rotliegend sandstone formation (Figures 1a and 1b). Production started in 1963 but earthquakes 
were not detected until 1991. Initially, the seismicity rate increased exponentially, despite annual extraction rates 
not being at their peak (Figure 1b, green curve). The 2012 Mw3.6 Huizinge earthquake, the largest event to date, 
caused public concern and a decision to decrease first and then shut-down production long before exhaustion of 
the gas reserve (de Waal et al., 2015; Muntendam-Bos et al., 2017; van Thienen-Visser & Breunese, 2015). The 
reduction in production was accompanied with a reduction of the seasonal variations of extraction as these varia-
tions were thought to increase the total seismicity (Muntendam-Bos & De Waal, 2013; Sijacic et al., 2017). More 
details about the gas field and the available data are given in Text S1 in Supporting Information S1.

The various stress-based models developed so far consider either instantaneous seismicity nucleation with an 
initial strength excess (Bourne & Oates, 2017a, 2017b; Bourne et al., 2018; Dempsey & Suckale, 2017, 2023; 
Meyer et al., 2022; Smith et al., 2022) a delayed response due to the nucleation process (Candela et al., 2019, 2022; 
Dahm & Hainzl, 2022; Kühn et al., 2022; Richter et al., 2020) or a combination of both (Dahm & Hainzl, 2022; 
Heimisson et al., 2022). These models fit well the observed seismicity based on yearly averaged stress changes, 
but predict drastically different responses to rapid variations of production such as shut-ins (Heimisson 
et al., 2022; Meyer et al., 2022). Moreover, a bias could be introduced as these models were calibrated ignoring 
that, in reality, gas extractions show ∼60%–80% larger production in the winter from 1975 to 2013 (Figure 1b). 
Ignoring short-timescale, large-amplitude stress variations could bias the model because the seismicity response 
to stress changes is non-linear: the CF is non-linear through the initial strength excess and Kaiser effect (seis-
micity rate drops to zero when the Coulomb stress is lower than previous peak values) (Kaiser, 1950); the RS 
includes a delayed Kaiser effect and, adding further non-linearity, an exponential dependence on ΔS (Heimisson 
& Segall, 2018). The introduction of a stress threshold, if an initial strength excess is allowed, is another source 
of non-linearity (Heimisson et al., 2022). Hereafter, we compare models with or without accounting for seasonal 
stress variations to illuminate the characteristics of the nucleation process.

2. Materials and Methods
We present a summary of the modeling strategy (Figure S1 in Supporting Information S1) that allows us to 
resolve (a) the pore pressure diffusion due to injection/extraction from a porous reservoir, (b) the mechanical 
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response of the reservoir to pressure variations, and (c) the relation between stress changes and seismicity adopted 
in this study. We then present the fundamentals of other analysis techniques used such as the synthetic catalog 
generation, the Schuster test, and the metric to quantify seasonality in synthetic catalogs.

2.1. Modeling Workflow

Our modeling workflow (Figure S1 in Supporting Information S1) consists of different modules which allow us 
to predict reservoir pressure, stress changes within and outside the reservoir, subsidence and seismicity based on 
the gas extraction flow rates at the wells. The parameters for the different modules are optimized from match-
ing  the observations (well pressure, subsidence, seismicity).

2.1.1. From Fluid Extraction to Pressure Changes

To relate fluid extraction to pressure changes in the reservoir, we use a simplified reservoir model (Meyer 
et al., 2022) which assumes vertical flow equilibrium (VFE) to compute fluid pressure diffusion in the reservoir 

Figure 1. The Groningen gas field & simulation results. (a) Geographic context showing extensive seismicity due to the gas field in an otherwise stable tectonic 
setting (left), and top view of the reservoir (right) showing identified faults (gray traces; (Oates et al., 2022)), and the earthquake catalog (with magnitude ≥1.1; (Dost 
et al., 2017; KNMI, 2023)) color coded by time. Sizes represent the earthquake magnitudes. (b) Observed data averaged over the gas reservoir versus time. Left y-axes 
shows cumulative extraction (black), and cumulative earthquake number (orange) since 1991, 34 years after the start of extraction. Right y-axis shows the discretized 
extraction data averaged either yearly (green line), or monthly (blue line). The monthly averaged extraction shows more than 80% seasonal variations with more gas 
extraction in the winter months. (c) Map view snapshots of simulation results at the dates shown in inset: fluid pressure (top row, with the position of extraction well 
clusters shown as triangles) and maximum Coulomb stress change calculated 10 m above the reservoir (ΔS, bottom row). (d) Simulation results averaged over the 
reservoir versus time. Left y-axis shows pressure (blue), and right y-axis shows maximum Coulomb stress changes (dark purple includes seasonal variations used as 
input for the monthly Threshold Rate and State failure function (TRS) model inversions, light purple shows smoothened seasonality used as input for the yearly TRS 
model inversions). Vertical dotted lines correspond to the snapshots shown in panel (c).
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from the extraction history. This model assumes that the timescale for vertical pressure equilibrium is much 
shorter than the horizontal one due to the thin and elongated geometry of the reservoir. The problem becomes 
a two-dimensional one and we solve the combined conservation of momentum and Darcy's law using the 
open-source finite element library FEniCS (Logg et al., 2012) and calibrate the model's parameters by history 
matching the well pressure time-histories. By reducing the computation cost using the VFE assumption, we can 
generate pressure (Δp(x,y,t)) space-time histories in the Groningen reservoir with 1-month temporal discretiza-
tion, allowing us for the first time to quantify the effect of seasonal variations of extraction in the pressure field 
(See Text S2.1 in Supporting Information S1 for details).

2.1.2. From Pressure Changes to Reservoir Deformation and Stress Changes

We use the poroelastic mechanical model from (Smith et al., 2022) to relate the fluid pressure changes to stress 
changes within and outside the reservoir.

Δp(x, y, t) calculated using the VFE reservoir model (Section 2.2.1) is combined with the geodetically derived 
uniaxial compressibility (Cm(x, y); (Smith, et al., 2019)), and the reservoir thickness (h(x, y)) such that the reser-
voir compaction writes:

𝐶𝐶 = 𝐶𝐶𝑚𝑚(𝑥𝑥𝑥 𝑥𝑥).Δ𝑝𝑝(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥). ℎ(𝑥𝑥𝑥 𝑥𝑥) (1)

We use a semi analytical Green's function approach (Geertsma, 1973; Kuvshinov, 2008) to relate compaction and 
displacement/stress. For details on the functions, the spatial smoothing used and the details on the stress calcula-
tion, see (Smith, et al., 2022); and Text S2.2 in Supporting Information S1. From the changes in shear stress, Δτ, 
and effective normal stress 𝐴𝐴

(

Δ𝜎𝜎′
N
= Δ𝜎𝜎N − Δp ), we compute the changes in Coulomb stress, ΔS(x, y, t), computed 

10 m above the reservoir and cumulated since 1960 (Figure 2a). We use a positive sign for compressive stress 
such that 𝐴𝐴 Δ𝑆𝑆 = Δ𝜏𝜏 + 𝑓𝑓𝑓Δ𝜎𝜎′

𝑁𝑁
 , with f the static friction coefficient of the rock. In this field, the fault's dips are 

usually ∼85° and the strikes show two dominant modes at N270°E and N350°E ((Smith et al., 2022); Figure 1a). 
We use the maximum Coulomb stress changes for both dominant receiver fault strike modes but results show 
little sensitivity to this choice (Smith et  al.,  2022), the chosen depth for calculation, and to f. Our model is 
computationally efficient and consistent with the 3-D stress changes computed using other methods (Bourne & 
Oates, 2017a, 2017b; Bourne et al., 2018; Buijze et al., 2017; Candela et al., 2019; Candela et al., 2022; Kühn 
et al., 2022; Van Wees et al., 2017). For detailed analysis of the effect of the different parameters of the model on 
seismicity forecasts, see (Smith et al., 2022). Under reasonable stress sampling schemes, the forecasts are little 
affected by the choice of the stress model. Changing the stress model has the effect of rescaling the inverted seis-
micity model parameters but does not drastically affect the seismicity forecasts (Kaveh et al., 2023).

2.1.3. From Stress Changes to Seismicity Rate Changes

Finally, we relate ΔS to the time-dependent seismicity rate change ΔR using the Threshold Rate and State failure 
function (TRS) of (Heimisson et al., 2022) which follows Dieterich's hypothesis (Dieterich, 1994) that earthquake 
nucleation is governed by RS but allows for a population of faults to be sub-critical initially (below steady-state), 
as expected in a quiet, intraplate tectonic context such as Groningen. A critical stress threshold (analog to the 
strength excess of the Coulomb Failure model) ΔSc has to be overcome to reach self-sustained fault slip acceler-
ation (earthquake nucleation) and produce seismicity (Heimisson et al., 2022). The TRS model writes for every 
point in space (x, y):

Δ𝑅𝑅(𝑡𝑡)

𝑟𝑟
=

exp

(

Δ𝑆𝑆(𝑡𝑡)−Δ𝑆𝑆𝑐𝑐

𝐴𝐴𝐴𝐴0

)

1

𝑡𝑡𝑎𝑎
∫

𝑡𝑡

𝑡𝑡𝑏𝑏
exp

(

Δ𝑆𝑆(𝑡𝑡′)−Δ𝑆𝑆𝑐𝑐
𝐴𝐴𝐴𝐴0

)

dt
′
+ 1

 (2)

if t ≥tb, and

Δ𝑅𝑅

𝑟𝑟
= 0 

if t ≤tb,

with r the background seismicity rate (the seismicity rate that results from constant tectonic loading), ΔS(t) 
the change in Coulomb stress, ΔSc the critical stress threshold, Aσ0 the frictional-stress parameter of RS 
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(Dieterich, 1994), ta the characteristic time associated to the nucleation process characterizing the decay of seis-
micity to background rates after a stress step. Finally, tb is the time at which ΔS first exceeded ΔSc.

When the sources are critically stressed, ΔSc ∼ 0, the formulation (Equation 2) is equivalent to that of Heimisson 
and Segall (2018). The characteristic time, ta relates to the secular background stressing rate, due to tectonic load-
ing, 𝐴𝐴 𝐴𝐴𝐴  according to 𝐴𝐴 𝐴𝐴𝑎𝑎 =

𝐴𝐴𝐴𝐴0

�̇�𝜏
 . It characterizes the nucleation process under such loading and would characterize 

the response time of the seismicity to a stress step added to the background seismicity. Note that if the system 
has been stressed, the relaxation time will change as described in Section 3.2. The TRS formulation allows for 
earthquake nucleation to be time dependent and nucleation would be nearly instantaneous in the limit where 
its response time goes to zero, as is assumed in the standard Coulomb failure model which is also commonly 
used to relate stress changes to seismicity (Bourne & Oates, 2017a, 2017b; Bourne et al., 2018; Dempsey & 
Suckale, 2017, 2023; Meyer et al., 2022; Smith et al., 2022).

We sample a probability distribution of the TRS model parameters using an ensemble Markov Chain Monte Carlo 
(MCMC) algorithm (Foreman-Mackey et al., 2013) implemented in PyMC3 (Salvatier et al., 2016) with uniform 
priors and a non-local Poisson log-likelihood function (See Text S2.3 in Supporting Information S1). For all TRS 
models generated in this study, we discretize the stress changes on a monthly basis to avoid numerical integra-
tion problems when comparing monthly and yearly discretizations. The difference between the “monthly” and 
“yearly” TRS model inversions presented hereafter is that the input stress changes and seismicity for the “yearly” 
models are smoothened using a 12-month average for the whole time-history. The posterior parameter space 

Figure 2. Yearly averaged seismicity rate forecasts for different models. (a) Earthquake rates comparing observed seismicity 
(orange curve, for M ≥ 1.1), and inversions for the different models tested in this study. Green curves represent the yearly 
inversion (seasonality smoothened out in input Coulomb stress). Blue curves represent the monthly inversion (seasonality 
accounted for in input Coulomb stress). Thin lines represent the 1,000 best models out of 50,000, accounting for epistemic 
uncertainty on model parameters. Thick lighter lines show the maximum-a-posteriori (MAP) models from the Markov 
Chain Monte Carlo inversion. Gray line represents the training period from 1993 to 2012. (b) Predicted seismicity rates 
for a hypothetical “shut-in” of the reservoir with no change of Coulomb stress past 2012 (dashed gray line). All curves 
are normalized to 2012. A Coulomb failure model with instantaneous nucleation would predict an immediate drop of the 
seismicity to the background level. Colors correspond to the inversions in (a), and different lines represent the 1,000 best 
models. (c, d, e) Epicentral event density for the MAP Threshold Rate and State failure function models for yearly (c), 
monthly (d), and for the observed catalog (e).
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accounts for epistemic uncertainty on the model's parameters. We report the 1,000 model parameter sets with the 
lowest negative log-likelihood calculated over the training period only. This allows us to compare constraints on 
TRS models accounting or not for seasonal variations. Equivalently, if we were to consider goodness of fit from 
given confidence bounds, the number of models falling within a fixed interval would bring information about the 
constraints on the TRS model parameters.

Then, from the inverted model parameters we can generate the seismicity rates for the whole reservoir as function 
of time, R(t). Finally, to generate earthquake catalogs we need to account for the aleatoric variability around the 
predicted rates which accounts for the fact that the earthquake generation is a non-stationary Poisson process of 
known rate. Details on the synthetic catalog generation are given in Text S3 in Supporting Information S1.

2.2. Testing Seasonality Through the Schuster Test & Spectrum

We test possible seasonality (periodicities) in the observed and synthetic seismicity catalogs using the Schuster test 
(Ader & Avouac, 2013; Beeler & Lockner, 2003; Schuster, 1897). For a tested period T, a phase θi is associated to each 
event i occurring at time ti such that 𝐴𝐴 𝐴𝐴𝑖𝑖 = 2𝜋𝜋

𝑡𝑡𝑖𝑖

𝑇𝑇
 . Then, a 2D walk of N successive unit length steps in the phase direction 

are performed. The total distance D between the start and end points of the walk relates to the Schuster p-value which 

measures the probability that the walked length is the result of a random Poisson point process as 𝐴𝐴 𝐴𝐴 = 𝑒𝑒
−
𝐷𝐷2

𝑁𝑁  , with N 

the total number of steps taken. Thus, the lower this p-value, the higher the probability that the detected periodicity is 
real. To study the correlation with a periodic perturbation, we evaluate the p-value over a continuous range of periods 
T ∈ [T0,T1] for example, we evaluate the Schuster spectrum (Ader & Avouac, 2013). The measured p-values can then 
be compared with the expected value, which depends on the tested period, not to be exceeded at a certain confidence 
level. The spectrum allows for identification of periodicities that have little probability to be due to chance because 
periodicities in the earthquake catalog will show as isolated low p-values in the spectrum, and event clusters will show 
as a drifting low p-value close to the characteristic time of the cluster (Ader & Avouac, 2013).

We define a new metric to characterize the capacity of the TRS models to capture seasonality as the vector distance 
error of the median of all synthetic catalog's Schuster random walks to that of the observed catalog. To separate 
their contribution, we also compute the phase, and distance errors for the median of all synthetic catalogs to the 
observed catalog. See Text S4 in Supporting Information S1 for details. This analysis allows to quantify the model's 
capacity of reproducing the amplitude and phase of the seasonal variations in the observed earthquake catalog.

3. Results and Discussion
3.1. TRS Model Parameters Not Accounting for Seasonal Stress Changes: “Yearly” Models

When seasonal fluctuations of ΔS and seismicity are ignored (Figure 1d, light purple curve), we obtain a “yearly” 
TRS model which fits well the temporal (Figure 2a, green curve) and spatial distributions (Figure 2c) of seismic-
ity. The prediction of the maximum-a-posteriori (MAP) yearly TRS model at the annual time scale is satisfying. 
However, if a range of acceptable models is considered (1,000 best models out of 50,000, accounting for epis-
temic uncertainty, see (Kaveh et al., 2023) for details), they yield widely different predictions outside the training 
period due to large trade-offs among the model parameters, especially between ta and r (Figure S3 in Supporting 
Information S1). The response time of seismicity to sub-annual stress variations is not well constrained in this 
inversion. To illustrate this effect, the green curves in Figure 2b show the response of the 1,000 best yearly TRS 
models assuming no stress-changes after 2012 (frozen to ΔS(ts), mimicking a hypothetical “shut-in” at time ts). 
The relaxation following the “shut-in” is not characterized by ta, (10–10,000 years for yearly TRS models), but by 
a new “accelerated” response time tacc such that Equation 2 becomes:

Δ𝑅𝑅

𝑟𝑟
=

exp

(

Δ𝑆𝑆(𝑡𝑡𝑠𝑠)−Δ𝑆𝑆𝑐𝑐
𝐴𝐴𝐴𝐴0

)

1 +
1

𝑡𝑡a
∫

ts

𝑡𝑡𝑏𝑏
exp

(

Δ𝑆𝑆(𝑡𝑡′)−Δ𝑆𝑆𝑐𝑐
𝐴𝐴𝐴𝐴0

)

dt
′
+ (𝑡𝑡 − 𝑡𝑡𝑠𝑠)

(

exp

(

Δ𝑆𝑆(𝑡𝑡𝑠𝑠)−Δ𝑆𝑆𝑐𝑐
𝐴𝐴𝐴𝐴0

)

𝑡𝑡a

) 

Δ𝑅𝑅

𝑟𝑟
=

𝑡𝑡𝑎𝑎

(𝑡𝑡 − 𝑡𝑡𝑠𝑠) +

𝑡𝑡𝑎𝑎+∫
𝑡𝑡𝑠𝑠
𝑡𝑡𝑏𝑏

exp

(

Δ𝑆𝑆(𝑡𝑡′)−Δ𝑆𝑆𝑐𝑐
𝐴𝐴𝐴𝐴0

)

dt
′

exp

(

Δ𝑆𝑆(𝑡𝑡𝑠𝑠)−Δ𝑆𝑆𝑐𝑐
𝐴𝐴𝐴𝐴0

)

 (3)
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We can identify this to the form:

Δ𝑅𝑅(𝑡𝑡)

𝑟𝑟
=

ta

(𝑡𝑡 − 𝑡𝑡𝑠𝑠) + 𝑡𝑡acc
 

whose characteristic decay time is:

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎a =

(

𝑡𝑡a + ∫
𝑡𝑡𝑠𝑠

𝑡𝑡𝑏𝑏
exp

(

Δ𝑆𝑆(𝑡𝑡′)−Δ𝑆𝑆𝑎𝑎
𝐴𝐴𝐴𝐴0

)

dt
′
)

exp

(

Δ𝑆𝑆(𝑡𝑡s)−Δ𝑆𝑆𝑎𝑎
𝐴𝐴𝐴𝐴0

) (4)

𝐴𝐴 𝐴𝐴acc

a
 becomes much shorter than ta because the nucleation process is accelerated exponentially due to stress increase 

induced by the reservoir compaction. Assuming an approximately linear increase of ΔS(t) at the multiannual time 
scale, it converges quickly toward 𝐴𝐴 𝐴𝐴acc

𝑎𝑎 (𝐴𝐴𝑠𝑠) ∼
𝐴𝐴𝐴𝐴0 .Δ𝐴𝐴

Δ𝑆𝑆(𝐴𝐴𝑠𝑠)
 where Δt is the duration of production from onset of seismicity 

to “shut in.” It is therefore inversely proportional to the average stressing rate: 𝐴𝐴
Δ𝑆𝑆(𝑡𝑡𝑠𝑠)

Δ𝑡𝑡
 , and proportional to Aσ0. In 

effect, our best yearly TRS models show 𝐴𝐴 𝐴𝐴acc
𝑎𝑎  ranging from 0.1 to 200 years after a hypothetical shut-in, showing 

that Aσ0 is poorly constrained (Figure S4 in Supporting Information S1, green curves, Figure S3A in Supporting 
Information S1).

3.2. Seasonal Stress Changes Effect on Model Parameter Inversion: “Monthly” Models

We next take seasonal stress variations into account (Figure 3, Figures 1b and 1d). At the sub-yearly timescale, 
pressure is not homogenized over the whole reservoir. Given the permeability (k∼3.55e−13 m 2) and porosity 
(ϕ ∼ 15%) of the reservoir, its average hydraulic diffusivity is αhy∼0.5 m 2/s and its characteristic diffusion length 
over 1 year is 𝐴𝐴 𝐴𝐴ℎ𝑦𝑦 =

√

2𝜋𝜋𝜋𝜋ℎ𝑦𝑦𝑡𝑡 ∼ 10 km which is smaller than the minimum length scale from any well cluster to 
the reservoir's edge (Figure 1b), effectively resulting in smeared seasonal reservoir pressure. This damping effect 
and the heterogeneity in reservoir compressibility (Burkitov et al., 2016; Smith et al., 2019) control the spatial 
distribution of seasonal ΔS amplitude (Figure 3d) which can reach ∼20 kPa (Figures 3a and 3b). The effect of 
seasonal stress variations could be significant if the seismicity response to stress changes is fast enough. Figure 3e 
compares the observed seasonal variation of seismicity rate, obtained by stacking monthly earthquakes for all 
years (orange curve), with the stack of rates expected for the CF model with instantaneous nucleation (Figure 3e, 
yellow curve). In that case, since the stress evolution is monotonic, the seismicity rate is proportional to the 
Coulomb stress rate, 𝐴𝐴 Δ�̇�𝑆 (Ader & Avouac, 2013; Dempsey & Suckale, 2017). The observed seasonal variation 
is much smaller than predicted by the instantaneous nucleation model and is out of phase by about 3 months. A 
time dependent nucleation process can in principle explain both the phase shift and the damped response (Ader 
& Avouac, 2013) as explored next.

We construct a “monthly” TRS model which accounts for seasonal stress variations. The stress changes are 
computed using monthly gas extractions accounting for seasonality (Figures 3, 1d, blue curve). The “monthly” 
and “yearly” TRS models predict temporal (Figure 2a) and spatial (Figures 2c and 2d) distributions of seismic-
ity that fit equally well the observations (Figure 2e) but yield significantly different posterior model parameter 
distributions (Figure S3 in Supporting Information S1). When seasonality in ΔS is accounted for, both the product 
r. ta and Aσ0 are tightly constrained (Figure S3 in Supporting Information S1, blue points). The available seismic 
catalog is insufficient to derive good constraints on the background seismicity rate so the trade-off between ta and 
r cannot be resolved, but the performance of the forecast is good as it depends chiefly on r. ta and Aσ0 which are 
relatively well constrained. Better constraints in the “monthly” TRS model parameters lead to consistently shorter 
and more tightly constrained relaxation times in response to changes in ΔS (Figure 2b, Figure S4 in Supporting 
Information S1). The annual stack of seismicity shows that the “yearly” models (Figure 3e, green curves) predict 
no seasonality with an average of ∼35–90 events/month, confirming indeed large epistemic uncertainty. On the 
other hand, the “monthly” models (Figure 3e, blue curves) show a consistent stack with the observed catalog and 
a drastically reduced epistemic uncertainty as explored below.

3.3. Constraining the Nucleation Characteristics From Earthquake Seasonality

We now assess the ability of the TRS models to explain both the phase and amplitude of the seismicity response to 
seasonal stress variations. We adopt the Schuster test & spectrum ((Ader & Avouac, 2013), Text S3 in Supporting 
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Information  S1) which allows searching for any possible periodicity by building a spectrum of the Schuster 
p-values. The Schuster spectrum calculated on the 1991–2022 Groningen earthquake catalog (Dost et al., 2017; 
KNMI, 2023) for M ≥ 1.1, shows a significant, isolated periodicity at 1-year period (Figure 4, orange colors, 
Figure S6 in Supporting Information S1). The Schuster p-value at 1 year (∼2.4e−3) uniquely falls above 90% 
confidence level (meaning the chance of one tested period yielding such a low p-value being due to chance is 
less than 10%). The corresponding Schuster walk at 1-year (Figure 4, orange wiggles (Beeler & Lockner, 2003; 
Noël et  al.,  2019)) shows consistent year to year drift indicative of excess seismicity in the winter, peaking 
between March and April, delayed with respect to peak extraction rates in January but synchronized with the 
maximum amplitude of calculated pressure, and ΔS in most of the reservoir (Figure  3d, and orange tick in 
Figures 4c and 4d). Note that if smaller earthquakes were considered in the analysis, the seasonality amplitude 
would become larger (Figure S6 in Supporting Information S1). The Schuster test and spectrum are not affected 
by the use of different magnitudes of completion, but we keep only events with magnitude ≥1.1 for consistency 
with the presented earthquake forecasts. To test if the observed seasonality is predicted by TRS models, we 

Figure 3. Spatial and temporal seasonal stress variations in the field & stacked seismicity. (a) Simulated local stress changes 
versus time at discrete locations color-coded in panel (c). (b) 12-month moving average detrended local stress changes at the 
same locations as in panel (a) versus time for the 1999–2021 period. The seasonal amplitudes of extraction and thus of stress 
changes were drastically reduced following the 2012 Mw3.6 Huizinge earthquake. (c) Map view of maximum seasonal stress 
variations peak-to-peak amplitude between 2000 and 2012. The points color-code locations at which local Coulomb stress 
evolution in time is shown in panels (a) and (b). (d) Mean month (during the 2000 to 2012 period) where the local maximum 
seasonal stress variations occur in the reservoir. The edges of the reservoir show a clear phase change for occurrence of 
maximum seasonal stress variations but have small amplitudes whereas the central and southern regions of the reservoir 
have in-phase large seasonal stress amplitudes (e.g., panel (c)). (e) Seasonal variation of seismicity rate obtained by stacking 
all years in the observed catalog (orange curve) compared with prediction of a Coulomb failure model with instantaneous 
nucleation (yellow curve, seismicity rate proportional to stress rate), and the stack of earthquake rates in our model inversions 
(accounting for epistemic uncertainty: green curves for the “yearly” models, blue for the “monthly” models).
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generate 100 synthetic catalogs from the MAP TRS models accounting for aleatoric variability in the seismicity 
generation (Figure S5 in Supporting Information S1) and calculate a Schuster spectrum (Figures 4a and 4b) and 
a Schuster walk at 1 year period (Figures 4c and 4d) for each catalog. The catalogs generated with the monthly 
TRS model (accounting for seasonal stress variations in the model inference and forecast) show clear periodicity 
at 1-year period with p-values centered around the observed catalog ones, quantitatively recovering the amplitude 
of seasonality (Figure 4a, blue dots). Remarkably, the synthetic catalogs generated from the MAP “monthly” 
TRS model (Figure 4c, blue wiggles) show a marked drift, with similar phase and amplitude as the observed 
catalog. We also generate synthetic catalogs using the MAP parameters of the “yearly” TRS model but using the 
seasonal variation of ΔS in input (Figures 4b and 4d, green colors). These example catalogs show no significant 
periodicity above ∼50% confidence. This “yearly” model predicts a more damped response to temporal varia-
tions of seasonal stress changes. We statistically quantify the capacity of the models to constrain annual seasonal 

Figure 4. Quantitative constraints on earthquake nucleation models using seasonality. (a), (b) Schuster spectrum (Ader & Avouac, 2013) for the observed catalog (with 
M ≥ 1.1, orange points), and 100 synthetic catalogs (accounting for aleatoric uncertainty, Supporting Information S1, Figure S5) derived from the yearly ((a), green 
points), and monthly ((b), blue points) maximum-a-posteriori Threshold Rate and State failure function (TRS) models respectively. The Schuster spectrum is evaluated 
for periods from 6 to 18 months (a larger range of period spectra is shown in Figure S6 in Supporting Information S1). Low, isolated p-values quantify seasonality at a 
given period. (c, d, e) Schuster walks at 1 year period on the same catalogs as (a) and (b) respectively, and the instantaneous Coulomb friction model (CF) model ((e), 
orange lines). Circles denote the probability that the seismicity results from a random process at 50%, 1%, and 0.1% confidence levels. Drift direction reflects the times 
of year with the maximum seismicity rate. The orange tick mark (MCS) shows the phase of the maximum seasonal Coulomb stress averaged over the whole reservoir 
history (March–April). The observed catalog (orange lines) shows a clear maximum in seismicity rate toward March–April. This phase (and amplitude) is quantitatively 
recovered by the shown monthly TRS model (considering seasonal stress variations in input). The example yearly TRS model does not show signs of seasonality. The 
instantaneous CF model overestimates the seasonality. (f) Median vector distance error of synthetic catalogs (accounting for both epistemic and aleatoric uncertainty) to 
the observed catalog versus the parameter Aσ0 (Supporting Information S1). The right-hand inset shows the error density.
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variations though the errors of the Schuster walks at 1 year period on synthetic catalogs (aleatoric uncertainty) 
with seasonal stress input to the observed walk (Figure 4f, Figure S7 in Supporting Information S1). Remarka-
bly, the 1,000 best models (accounting for epistemic uncertainty) using yearly TRS models show ∼one order of 
magnitude larger errors in phase and amplitude of seasonality compared to the monthly TRS ones (Figure 4f). 
Using this seasonal analysis and the metrics to quantify seasonality, we can further tighten the constraints on the 
range of admissible parameters (Figure 4e, Figure S3B in Supporting Information S1 light blue dots). Finally, 
we evaluate the seasonality predicted by the instantaneous nucleation CF model in Figure 4e (yellow curves). 
This model strongly over-predicts seasonality and responds in phase to the maximum Coulomb stress rate, 𝐴𝐴 ̇Δ𝑆𝑆 
(Ader & Avouac, 2013; Dempsey & Suckale, 2023), effectively showing that the nucleation process cannot be 
instantaneous.

Solid Earth tides -deformations of Earth's surface caused by gravitational forces-are another source of 
short-timescale stress variations that may also affect seismicity (Cochran et al., 2004). In Groningen, the ampli-
tude of stress variations due to tidal loads is <0.5 kPa (Figure S8 in Supporting Information S1, Supplementary 
Text) so ∼40 times smaller than the estimated amplitude due to seasonal extraction variations, consistently with 
the observation that the Schuster spectrum doesn't reveal any detectable periodicity at the dominant semi-diurnal 
and diurnal tidal periods (Figure S6 in Supporting Information S1).

4. Conclusions and Implications
Our results highlight the merit of accounting for the finite duration of earthquake nucleation and a possible initial 
strength excess to forecast induced seismicity. These two elements are needed to obtain a model that can predict 
the response of seismicity to stress changes on both short-and-long timescales, and we have proposed a method to 
quantify the goodness of fit to the short-timescales in addition to the conventional evaluation on long timescales. 
If the initial strength excess is ignored (Candela et al., 2019), the seismicity response time can be overestimated 
by orders of magnitude leading to seismicity forecasts with a sustained seismicity tail because the delay between 
the start of operations and the onset of seismicity is adsorbed by a long characteristic nucleation time. This bias 
effectively shuts-down the effect of short-timescale stress variations, and over-predicts seismicity rates follow-
ing decreases in fluid extraction rates (Figure 2b; Heimisson et al., 2022). Alternative formulations than RS to 
account for a finite nucleation time should lead to a similar behavior (Dahm & Hainzl, 2022; Zhai et al., 2019). 
This study shows that the seismicity response to seasonal stress variations at Groningen is consistent with the 
principle that stress variations result in an earthquake time advance (if the Coulomb stress change is positive) 
or delay (if the Coulomb stress change is negative) (Stein, 1999). This principle holds for earthquake nucleation 
models based on rate-and-state or coulomb friction with instantaneous failure. A Coulomb stress increase has 
the effect of bringing potential earthquake nucleation sites to failure but the transient increase in seismicity rate 
will drop as nucleation sites are consumed, and the duration of the transient is characterized by 𝐴𝐴 𝐴𝐴acc

𝑎𝑎  . The opposite 
occurs under a stress decrease. The total number of events averaged over a period of the order of 𝐴𝐴 𝐴𝐴acc

𝑎𝑎  or larger will 
not change if periodic stress variations are added over the mean stressing rate. Models with long (>1000 years) 
response times (Candela et al., 2019) can give the impression that more events occur due to seasonal variations if 
the observation period is not long enough to capture the system's relaxation (Figure 2b, and Figure S4 in Support-
ing Information S1, green curves). Our study shows that 𝐴𝐴 𝐴𝐴acc

𝑎𝑎  is actually small enough (<10 years) that the seasonal 
variations of stress don't augment the seismicity averaged over an annual to multiannual time scale.

The mitigation of seismic hazard associated to subsurface fluid injection or extraction operations may be improved 
by accelerating model calibrations in three ways. First, the deployment of a sensitive seismic network well before 
starting subsurface operations, combined with enhanced earthquake detection techniques (Kong et  al.,  2018) 
would help constrain the background seismicity rates (r, which presents a strong tradeoff with ta, Figure S3 in 
Supporting Information S1) and reveal any induced seismicity early on, allowing for early calibration of the fore-
casting model. Second, varying fluid injection or production rates in a harmonic manner with various periods, 
would also help tighten the forecasting model (even if no correlated seismicity response is observed). Third, by 
performing shut-in operations over long enough time durations to track and constrain the relaxation of seismicity. 
Unbiased forecasting models of induced seismicity obtained by coupling pressure modeling with geomechanical 
deformation and seismicity should help mitigate the risk associated to the exploitation of subsurface reservoirs 
(geothermal, CO2 sequestration, hydrogen storage, hydrocarbon extraction).

Finally, stress variations at short-and-long times scales also affect natural systems (tectonic loading, post-seismic 
relaxation, hydrological/glacial load variations, and fault-to-fault interactions) and their seismicity response can 
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provide insight into earthquake physics as shown here for induced seismicity. Commonly, in such studies, only 
one source of stress variations is considered, and our study shows that using a model calibrated at one time scale 
to forecast seismicity at another timescale can be flawed.
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