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S U M M A R Y 

Earthquakes come in clusters formed of mostly aftershock sequences, swarms and occasional 
foreshock sequences. This clustering is thought to result either from stress transfer among 

faults, a process referred to as cascading, or from transient loading by aseismic slip (pre- 
slip, afterslip or slow slip events). The ETAS statistical model is often used to quantify the 
fraction of clustering due to stress transfer and to assess the eventual need for aseismic slip to 

explain foreshocks or swarms. Another popular model of clustering relies on the earthquake 
nucleation model derived from experimental rate-and-state friction. According to this model, 
earthquakes cluster because they are time-adv anced b y the stress change imparted by the 
mainshock. This model ignores stress interactions among aftershocks and cannot explain 

foreshocks or swarms in the absence of transient loading. Here, we analyse foreshock, swarm 

and aftershock sequences resulting from cascades in a Discrete Fault Network model governed 

by rate-and-state friction. We show that the model produces realistic swarms, foreshocks 
and aftershocks. The Omori law, characterizing the temporal decay of aftershocks, emerges 
in all simulations independently of the assumed initial condition. In our simulations, the 
Omori law results from the earthquake nucleation process due to rate and state friction and 

from the heterogeneous stress changes due to the coseismic stress transfers. By contrast, the 
in verse Omori la w, which characterizes the accelerating rate of foreshocks, emerges only in 

the simulations with a dense enough fault system. A high-density complex fault zone favours 
fault interactions and the emergence of an accelerating sequence of foreshocks. Seismicity 

catalogues generated with our discrete fault network model can generally be fitted with the 
ETAS model but with some material differences. In the discrete fault network simulations, fault 
interactions are weaker in aftershock sequences because they occur in a broader zone of lower 
fault density and because of the depletion of critically stressed faults. The productivity of the 
cascading process is, therefore, significantly higher in foreshocks than in aftershocks if fault 
zone complexity is high. This effect is not captured by the ETAS model of fault interactions. 
It follows that a foreshock acceleration stronger than expected from ETAS statistics does not 
necessarily require aseismic slip preceding the mainshock (pre-slip). It can be a manifestation 

of a cascading process enhanced by the topological properties of the fault network. Similarly, 
ear thquake swar ms might not al wa ys impl y transient loading b y aseismic slip, as they can 

emerge from stress interactions. 

Ke y words: Computational seismology; Earthquak e hazards; Earthquak e interaction, fore- 
casting, and prediction; Statistical seismology. 
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.  I N T RO D U C T I O N  

arthquake clusters are abundant in seismicity catalogues. They can
onsist of mainshock–aftershock sequences, foreshock sequences
r swarms (Mogi 1963 ). Aftershocks are most common and eas-
l y observ able in regular earthquake catalo gues. Sw arms resemble
ftershock sequences but do not have a mainshock and are often
C © The Author(s) 2023. Published by Oxford University Press on behalf of The Roy
nferred to be associated with transient aseismic slip (e.g. Vidale &
hearer 2006 ; Lohmann & McGuire 2007 ; Llenos et al. 2009 ; Ross
t al. 2017 ; Sirorattanakul et al. 2022 ), and fluid flow (e.g. Ross
t al. 2020 ). Foreshocks are less frequent but can still be detected
n regular seismicity catalogues (e.g. Jones & Molnar 1979 ; Bou-
hon et al. 2013 ; Chen & Shearer 2016 ; Kato & Ben-Zion 2021 ).
he y hav e frequently been observ ed prior to subduction interplate
al Astronomical Society. 831 
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earthquakes (e.g. Bouchon et al. 2013 ; Ruiz et al. 2014 ; Kato & 

Ben-Zion 2021 ). They might actually not be uncommon in other set- 
tings. For example, the analysis of an enhanced seismicity catalogue 
obtained with template matching techniques (Ross et al. 2019a ) has 
shown that, in California, more than 20 per cent of M > 4 earth- 
quakes hav e foreshocks, ev en though their precise proportion has 
been debated (Trugman & Ross 2019 ; van den Ende & Ampuero 
2020 ; Moutote et al. 2021 ). 

Aftershocks are well understood to be triggered either directly 
by the mainshock (Dieterich 1994 ) or indirectly via other after- 
shocks (e.g. Ziv & Rubin 2003 ; Marsan 2005 ; Marsan & Lenglin é 
2008 ; Cattania et al. 2015 ), afterslip (e.g. Perfettini & Avouac 2004 ; 
Cattania et al . 2015 ; Frank et al. 2017 ) or possibly pore pressure 
diffusion (Nur & Booker 1972 ; Miller et al. 2004 ). Spatially, after- 
shocks correlate primarily with the Coulomb stress changes from 

mainshock (e.g. King et al. 1994 ; Harris 1998 ) and would therefore 
be consistent with direct triggering. Ho wever , indirect triggering, 
and possibly afterslip, are probably also playing a role, as implied 
by the gradual expansion of aftershocks with time (e.g. Ziv & Rubin 
2003 ; Marsan 2005 ; Perfettini & Avouac 2007 ; Marsan & Lenglin é 
2008 ; Peng & Zhao 2009 ; Perfettini et al. 2018 ), and the occurrence 
of aftershocks in zones of ne gativ e Coulomb stress change (often 
called ‘stress shadows’) due to the mainshock (Marsan 2006 ; Ziv 
2006 ; Meier et al. 2014 ). 

It is well established that the rate of aftershocks decays with 
time following 1/ t p with p ∼ 1, called the Omori law for p = 1, 
or the modified Omori law for p �= 1 (Omori 1894 ; Utsu et al. 
1995 ). This phenomenological law can be explained as the result 
of the time-dependent earthquake nucleation process derived from 

laboratory-based rate and state friction (Dieterich 1979 ). Although 
aftershocks could also be governed by pore-pressure changes (e.g. 
Nur & Booker 1972 ) or afterslip (e.g. Perfettini & Avouac 2004 ), 
this prediction is considered a success in support of the rate and state 
theor y of ear thquake nucleation (e.g. Dieterich 1994 ). The spatial 
distribution of aftershocks is generally well explained with static 
stress triggering (King et al. 1994 ). The ‘Coulomb rate and state 
(CRS) model’ (Stein et al. 1997 ; Ziv & Rubin 2003 ; Helmstetter 
& Shaw 2006 ; Heimisson & Segall 2018 ; Ozawa & Ando 2021 ) 
combines the two elements to predict the resulting process in time 
and space. Despite its well-established foundations and the success 
of the CRS model at explaining qualitati vel y and quantitati vel y af- 
tershocks sequences (e.g. Stein et al. 1997 ), statistical models such 
as the Epidemic-Type Aftershock Sequence (ETAS) model (Kagan 
& Knopoff 1981 ; Ogata 1988 ; 1998 ) actually tend to predict better 
the spatiotemporal evolution of aftershocks, probably because of 
their ability to capture the effect of heterogeneities and clustering 
(e.g. Llenos et al. 2009 ; Segou et al. 2013 ; Cattania et al. 2014 ; 
Mancini et al. 2019 ; Hardebeck 2021 ). Note that, when the CRS 

model is applied to real cases, indirect triggering by aftershocks 
is generally ignored because it would require detailed knowledge 
of the slip distribution due to each aftershock which is impractical. 
The cascading process can, ho wever , be incorporated into numerical 
simulations based on rate and state friction (Ziv 2003 ; Ziv & Rubin 
2003 ; Dieterich & Richards-Dinger 2010 ; Ozawa & Ando 2021 ; 
Dublanchet 2022 ). Such simulations have been found to reproduce 
foreshock and aftershock statistics, in particular, the Omori and in- 
verse Omori laws (Dieterich 1994 ; Ziv & Rubin 2003 ; Dieterich 
& Richards-Dinger 2010 ; Richards-Dinger & Dieterich 2012 ). 
Ho wever , these simulations did not explore the role of secondary 
f aults. Secondary f aults are observed to be systematically associ- 
ated with major faults forming fault zones with rather complex fault 
geometries (e.g. Faulkner et al . 2010 ; Savage & Brodsky 2011 ). 
They probably play an important role in generating foreshocks and 
aftershocks. Ozawa & Ando ( 2021 ) considered secondary faults and 
analysed their contribution to aftershocks, but they didn’t investigate 
foreshocks. 

Foreshocks might result from the same cascading process as af- 
tershocks (Ellsworth & Bulut 2018 ). In this view, foreshocks and 
aftershocks result from the same interevent triggering process: a 
mainshock is simply an earthquake triggered by a previous event, 
which happens to be of lower magnitude and therefore dubbed a 
foreshock in retrospect. For example, the M 7.1 mainshock of the 
2019 Ridgecrest earthquake sequence occurred within the after- 
shocks sequence of a previous M 6.4 foreshock (Ross et al. 2019b ; 
Chen et al. 2020 ; Lomax 2020 ). Numerical simulations of cas- 
cading based on ETAS (Helmstetter & Sornette 2002 ) or the CRS 

model (Ziv 2003 ; Dieterich & Richards-Dinger 2010 ) can indeed 
produce foreshock sequences. Such simulations can explain the ob- 
servation that, if multiple sequences of foreshocks are stacked, they 
follow an ‘inverse Omori law’, meaning a power-law acceleration of 
seismicity rate similar to aftershocks sequence but reverse in time 
(Jones & Molnar 1979 ). An alternative view to the cascade model 
is that foreshocks would be driven by pre-slip, aseismic slip pre- 
ceding the mainshock. There are examples of foreshock sequences 
associated with transient geodetic deformation in support of that 
view (e.g. Kato et al. 2012 ; Ruiz et al. 2014 ). According to this 
view, foreshocks are a by-product of aseismic slip associated with 
pre-slip, e ventuall y due to the mainshock nucleation process. In 
recent years, several examples of large mainshocks preceded by 
foreshocks sequence w ere w ell documented. Some foreshock se- 
quences can be better explained by the pre-slip model than the 
cascade model (Dodge et al. 1996 ; McGuire et al. 2005 ; Kato et al. 
2012 ; Bouchon et al. 2013 ; Ruiz et al. 2014 ; Tape et al. 2018 ). Con-
versely, some other recent observations favour the cascade model 
(Ellsworth & Bulut 2018 ; Yoon et al. 2019 ; Lomax, 2020). A nu- 
cleation model involving pre-slip-driven and cascading foreshocks 
is actually plausible (Kato & Ben-Zion 2021 ) and is supported by 
laboratory e xperiments (McLaske y 2019 ) and numerical simula- 
tions (Cattania & Segall 2021 ). These different views are thus not 
necessaril y exclusi ve. 

Because geodetic measurements of pre-slip are rarely available, 
the possibility of pre-slip is often estimated by testing the frac- 
tion of observed foreshocks against the prediction for a cascading 
process assumed to result from static coseismic stress transfer. Be- 
cause of its superior performance at matching aftershocks, ETAS is 
generally used to assess this probability (e.g. McGuire et al. 2005 ; 
Bouchon et al. 2013 Moutote et al. 2021 ). The ETAS model often 
predicts much fewer foreshocks than observed. This is documented 
on oceanic transform faults (McGuire et al. 2005 ), subduction zones 
(Bouchon et al. 2013 ), and to a lesser extent, in the context of the 
San Andreas fault system in Southern California (Moutote et al. 
2021 ). Assuming that ETAS correctly predicts foreshocks due to 
cascading, it follows that pre-slip would be needed to explain the 
abundance of foreshocks. There is, ho wever , no assurance that it is 
appropriate to use ETAS for that purpose. First, ETAS is additive 
and unbounded although, in reality, (1) clustering probably results 
from a time-advance process (e.g. Stein 1999 ; Gomberg 2001 ), 
(2) the moment release must be bounded by the initial stress and 
the rate of loading due to tectonics and (3) large faults are gener- 
ally embedded in a complex fault zone with secondary faults and 
fractures associated with the main fault (e.g. Ben-Zion & Sammis 
2003 ). The density of secondary faults and fractures is dependent 
on the magnitude of cumulated fault slip and decaying with distance 
away from the main fault (Faulkner et al. 2010 ; Savage & Brodsky 
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011 ). A higher fault density around the major faults should favour
ault interactions and boost the fraction of foreshocks. Therefore,
his study aims to analyse the cascading process in synthetic earth-
uake sequences generated in a network of faults obeying rate and
tate friction, analyse the predicted sequences of foreshocks and
ftershocks and compare our modelling results with the cascading
rocess in ETAS simulations. 

Hereafter we first present an analytical approximation of the time
volution of foreshocks dues to cascading. This analysis builds in
articular on the studies of Dieterich ( 1994 ), Heimisson & Segall
 2018 ) and Heimisson ( 2019 ). We then present numerical simu-
ations for a discrete fault network following an approach similar
o that of Ozawa & Ando ( 2021 ), Dublanchet ( 2022 ), or the in-
erently discrete fault model of Ziv ( 2003 ) and Richards-Dinger
 Dieterich ( 2012 ). We consider fault networks with varied com-

le xity and inv estigate the influence on foreshocks and aftershocks.
he simulation results are compared with the statistical character-

stics of seismicity catalogues, including the Omori law, the inverse
mori law, and the Gutenberg–Richter law. The stacked foreshock

nd aftershock rates are further compared with the prediction from
he ETAS model. 

.  I N T E R A C T I O N S  I N  A  N E T W O R K  O F  

AU LT S  G OV E R N E D  B Y  R AT E  A N D  

TAT E  F R I C T I O N — T H E O RY  

his section briefly re vie ws rate and state friction and Dieterich
 1994 )’s model of aftershocks (Section 2.1 ). Then, the theory is
dapted to foreshocks with account for source interactions (Section
.2 ), and finally, the role of stress change heterogeneities is included
Section 2.3 ). The analytic expressions presented in this section are
erived based on simplifying assumptions, which are relaxed in the
umerical simulations presented in the following section. 

.1. Frictional framework and Dieterich model 

aboratory studies show that friction depends on the slip rate and
n some state variable that allows restrengthening (also referred to
s ‘healing’) at low slip rates (Dieterich 1979 ; Marone 1998 ). The
ost common form is 

= μ0 + A log 

(
V 

V 0 

)
+ B log 

(
V 0 θ

D c 

)
, (1) 

here V is velocity, θ is state variable, μ0 is a reference friction
oefficient at reference velocity V 0 , D c is a critical slip distance and
 and B are empirical constants for the magnitude of direct and
 volution ef fects, respecti vel y. 

The evolution of the state variable ( θ ) is commonly described
sing either of two widely used evolution laws denoted, respectively,
s the ageing law (Dieterich 1979 ), 

d θ

dt 
= 1 − V θ

D c 
, (2) 

nd the slip law (Ruina 1983), 

dθ

dt 
= − V θ

D c 
log 

(
V θ

D c 

)
. (3) 

The two evolution laws are similar when the system is near steady
tate ( θ ∼ D c / V ) but substantially diverge otherwise. In the slip law,
he state variable only evolves at non-zero velocity, whereas the
geing law delivers maximum healing in a static system ( V = 0).
ur simulations are conducted with the ageing la w. Ho wever , we
lso conducted simulations with the slip law for comparison. 

Dieterich ( 1994 ) presented an analytic expression for seismicity
ate change by assuming a population of faults well-above-steady-
tate (meant to represent ‘critically stressed’ fault), θ >> D c / V .

ith this assumption, the ageing law (eq. 2 ) can be simplified to θ
 θ 0 e −δ / Dc , which allows deriving analytic expressions of seismicity

ate change if the whole population is submitted to the same stress
hange. With this assumption, in a constantly loaded system with a
oading rate τ̇ , the rupture time (time to instability) is: 

 inst = 

Aσ0 

τ̇
log 

(
τ̇

H V i σ0 
+ 1 

)
, (4) 

here σ 0 is normal stress, V i is initial velocity and 

H = − k 

σ0 
+ 

B 

D c 
, (5) 

here k is the stiffness of the fault. 
Assuming a ‘population’ of non-interacting faults with initial

onditions such that they would produce a constant seismicity rate
or a constant loading rate, Dieterich ( 1994 ) showed that a step
tress, representing the effect of a mainshock, results in an immedi-
te increase of the seismicity rate followed by a 1/ t decay consistent
ith the Omori law. 
In the case that the normal, σ ( t ), and shear stress, τ ( t ), vary with

ime in an unspecified way, Heimisson & Segall ( 2018 ) show that
he rupture time can be obtained from the following equation ∫ t inst 

0 
exp 

(
τ ( t ′ ) 

Aσ ( t ′ ) 
− τ0 

Aσ0 

)
dt ′ = 

A 

H V i 
, (6) 

here V i , τ 0 and σ 0 are the velocity, shear stress and normal stress
t time t = 0, respecti vel y. Heimisson & Segall ( 2018 ) further
eneralized eq. ( 6 ) as ∫ t 

0 
exp 

(
S a ( t ′ ) 
Aσ0 

)
d t ′ = 

∫ B( N ) 

0 
exp 

(
S b ( t ′ ) 
Aσ0 

)
d t ′ , (7) 

here S a ( t ) is the stress change as a function of time and S b ( t ) is
ackg round (unper turbed) stressing, which is related to the time, t ,
o the instability of N th source B ( N ). 

.2 Foreshock from interacting sources 

n this section, we show that foreshock sequences can be explained
ased on the rate-and-state nucleation model used by Dieterich
 1994 ) if fault interactions are considered. We use the mean-field
pproximation to represent stress interactions. We neglect tectonic
oading, assuming that the period of time considered in this analysis
s short enough that the influence of further tectonic loading is
nsignificant. This model predicts the emergence of inverse Omori
aw, which is often observed in stacked (i.e. averaged) foreshock
equences. More realistic numerical simulations are presented and
iscussed later in this work. 

In nature, all faults interact with each other. If a sufficient num-
er of critically stressed faults are located nearby, the interactions
ay significantly accelerate the event rate. To get a simple analyt-

cal expression, we assume a uniform and isolated population of
nteracting sources, which would produce a constant background
eismicity rate [i.e. B ( N ) = N / r in eq. ( 7 ), where r is the background
vent rate] in the absence of a background stressing rate (i.e. S b = 0).
ence, the right-hand side of eq. ( 7 ) becomes N / r . 
To describe the stressing history S a , resulting from source inter-

ctions, we make a mean-field approximation corresponding to a
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uniform interaction model as suggested by Heimisson ( 2019 ). We 
define � S as the average stress change dri ven b y a single seismic 
event on all other faults. Since the magnitude of the interaction be- 
tween two faults is dependent on the fault distance, � S is dependent 
on the density of faults. If the fault density is high (the average dis- 
tance is low), � S is high, and conversely, if the fault density is low 

(the average distance is high), � S is low. The stress change from 

the interactions is S a ( t ) = N ( t ) × � S , where N ( t ) is event count at
time t . With the above simplifications, eq. ( 7 ) becomes ∫ t 

0 
exp 

(
N ( t ′ ) �S 

Aσ0 

)
dt ′ = 

N 

r 
. (8) 

Solving the equation for N yields the number of events at time t . 
Eq. ( 8 ) has a solution 

N = −r t f log 

(
1 − t 

t f 

)
, (9) 

where the characteristic foreshock time 

t f = 

Aσ0 

r�S 
. (10) 

Differentiating eq. ( 9 ) yields that the seismicity rate, R , is given 
by 

R 

r 
= 

1 

1 − t/t f 
. (11) 

Eq. ( 11 ) predicts a hyperbolic increase of event rate as t ap- 
proaches t f (Fig. 1 a), consistent with the inverse Omori law doc- 
umented from stacking foreshock sequences observed in nature 
(Jones & Molnar 1979 ; Bouchon et al. 2013 ). The time at which 
the number of earthquakes due to the cascading process diverges, 
t f , is inversely proportional to the average interaction stress � S , and 
therefore, the foreshock rate change is dependent on � S (Fig. 1 b) 
and hence, on the density of the fault population. If the faults are 
packed closer, the average stress change � S increases, leading to a 
more rapidly diverging rate of foreshocks. 

For a finite fault network (or finite accumulated stress), at some 
time before t f (i.e. before R goes to infinite), the population of 
critically stressed faults should get depleted and the event rate should 
start decelerating. If no large event is triggered before the depletion, 
for instance, due to the absence of a large fault patch near the 
clustered event, the cluster would be characterized as a seismic 
swarm. If a large mainshock is triggered, it would significantly 
change the stress field in the area. Assuming that the stress change 
from the mainshock is significantly larger than interactions between 
smaller faults, the system departs from the prediction based on 
the mean-field approximation and prompts an aftershock sequence. 
Assuming that the mainshock occurred at time t m ( < t f ), from eq. 
( 11 ), the seismicity rate at the time before the mainshock t ∗ becomes 

R 

r 
= 

t f 
t ∗f + t ∗

. (12) 

with t f ∗ = t f − t m and t ∗ = t m − t . It follows the inverse Omori 
law with respect to the arbitrarily selected mainshock time. The 
mainshock time t m can be some arbitrary number smaller than t f . 
The probability of a mainshock can be estimated, assuming that 
the frequency-magnitude distribution of earthquakes follows the 
Gutenberg–Richter law. 

We consider two arbitrary cases of fault populations with differ- 
ent average interaction stress � S . One is dense, and therefore the 
interaction stress is large ( � S = 2 kPa), and the other is sparse, and 
therefore the interaction stress is small ( � S = 100 Pa). If both popu- 
lations follow an identical Gutenberg–Richter law, statistically, they 
have the same chance of a mainshock rupture at a given cumulative 
event count N . We may assume that the mainshock occurs at some 
arbitraril y chosen v alue of N , for example, N = 100 or N = 1000. 
Given N , the mainshock time t m can be calculated from eq. ( 9 ), and 
the seismicity rate can be calculated from eq. ( 11 ) (Fig. 1 c). The 
densely populated case (red) shows a clear inverse Omori law trend 
for both values of N . Conversel y, the sparsel y populated case (blue) 
shows a weak ( N = 1000) or no ( N = 100) inverse Omori law trend 
(Fig. 1 c). 

One may consider a dimensionless mainshock time defined by the 
ratio between the mainshock recurrence time ̂  t m 

and characteristic 
foreshock time t f , which characterizes the hyperbolic increase of 
foreshocks. Because the expected occurrence time of the mainshock 
increases with its magnitude, it follows from eq. ( 12 ) that larger 
mainshocks are more likely to have notable foreshocks. From the 
Gutenberg–Richter law, the expected mainshock recurrence time ̂  t m 

of earthquakes of magnitude larger than the mainshock magnitude 
M m , is 

ˆ t m 

= 

10 b( M m −M c ) 

r 
, (13) 

where r is the seismicity rate of earthquakes with a magnitude larger 
than a reference magnitude which could be chosen as the magnitude 
of completeness of the catalogue, M c , and b is the Gutenberg–
Richter b -value. With eqs ( 10 ) and ( 13 ), a dimensionless mainshock 
time can be defined, 

τm 

= ̂

 t m 

/t f = 

�S 10 b( M m −M c ) 

Aσ
. (14) 

Eq. (14 ) quantifies the prospect of observing foreshocks. If ˆ t m 

is much smaller than the characteristic foreshock time (i.e. small 
τm ), the mainshock likely occurs well before t f , and accordingly, the 
foreshock acceleration will be insignificant. For A = 0.003, σ = 

15 MPa, b = 1, M c = 2 and M m = 5, the dimensionless mainshock 
time for � S = 100 Pa and � S = 2 kPa are τm ( � S = 100 Pa)
= 2.2 and τm ( � S = 2 kPa) = 44.4. This result corresponds to 
Fig. 1 (c) as the � S = 2 kPa case (red) shows a more visible inverse 
Omori law than the � S = 100 Pa case (blue). Eq. (14 ) predicts 
that the foreshock acceleration may be more easily seen for larger 
interaction � S, larger magnitude mainshock M m and smaller normal 
stress system σ . 

It should be noted that this analytical derivation does not im- 
ply that the inverse Omori law should be visible in an individual 
foreshock sequence. It would be observable only in a sequence 
including a large number of events, which is never the case in re- 
ality as detection is al wa ys limited. In the case of a small number 
of events, the aleatoric distribution of interevent time would mask 
the underlying statistical law. It is, therefore, a common practice 
in the analysis of real sequences or numerical simulation to stack 
individual sequences (e.g. Jones & Molnar 1979 ; Bouchon et al. 
2013 ). 

2.3 Aftershocks from heterogeneous stress change 

Dieterich ( 1994 ) model assumes a ‘population’ of fault with a spe- 
cific distribution of initial velocity so that a constant seismicity rate 
would result in a constant loading rate. This specific initial condition 
is actually not required to produce aftershock sequences consistent 
with the Omori law (Ziv 2003 ; Ozawa & Ando 2021 ). In the analysis 
presented in this section, we show that the Omori law can instead 
result from heterogeneous stress changes. 
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(a) (b) (c)

Figure 1. (a) Dimensionless seismicity rate versus dimensionless time (eq. 11 ). (b) Cumulative event number N with time (eq. 9 ) with different magnitudes of 
interaction (red � S = 2 kPa, blue � S = 100 Pa). Red and blue colours denote � S = 2 kPa and � S = 100 Pa cases, respecti vel y. (c) Rate versus time before 
mainshock (eq. 12 ). The dashed line assumes that the mainshock occurred at N = 100, and the solid line assumes that the mainshock occurred at N = 1000. 
The dimensionless mainshock time is respecti vel y τm ( � S = 100 Pa) = 2.2 and τm ( � S = 2 kPa) = 44.4. 
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In Dieterich’s model, seismicity rate change during the aftershock
equence can be calculated from the impact of stress changes on
ime to instability (eq. 6 ). If a step shear and normal stresses change
ccurs at t = 0 in the absence of a background stressing rate, i.e . τ
 τ 0 + �τ and σ = σ 0 + �σ , eq. ( 6 ) yields, 

 inst = 

A 

H V i 
exp 

(
τ0 

Aσ0 
− τ0 + �τ

A ( σ0 + �σ ) 

)
. (15) 

Or approximately, assuming small stress changes compared to
he initial stresses, 

 inst = 

A 

H V i 
exp 

(
−�σ f 

Aσ0 

)
, (16) 

here �σ f is Coulomb stress change defined as, �σ f = �τ −
0 �σ with μ0 = τ 0 / σ 0 . Given the material properties H and A ,
q. ( 16 ) shows that the time-to-instability of a well-above-steady-
tate (critically stressed) fault is determined by the magnitude of
tress change ( �σ f ) and the velocity at the time ( V i ). 

Dieterich’s model assumes that the faults form a ‘population’
hat would produce a constant seismicity rate for a constant shear
oading rate. This assumption requires a specific initial velocity
istribution 

V 

N 
i = 

τ̇

H σ0 

(
exp 

(
N 
r 

τ̇

Aσ0 

)
− 1 

) . (17) 

here V i 
N is the initial velocity of N th event, τ̇ is the loading rate,

 is the corresponding seismicity rate. Dieterich model additionally
ssumes that all the faults in a population experience an identical
tress change. If the stress change is a step function, the Omori law
aturally results from the time-to-instability change. Meanwhile,
f the distribution of initial velocity does not follow eq. ( 17 ), the
mori law would not result from a step stress change. Although the

onstant seismicity rate at the constant stressing rate is a reasonable
ssumption, it seems to be a quite restrictive prerequisite since
here is little chance that it would be satisfied in a local area at some
rbitrary time. Numerical simulations presented in previous studies
ave, in fact, shown that the Omori law can still emerge even if this
ssumption is relaxed (Ziv 2003 ; Ozawa & Ando 2021 ). 

Here we investigate this issue in the case of scattered receiver
aults with arbitrary initial velocity distributions. We consider the
istribution of Coulomb stress changes �σ f for receiver faults uni-
ormly distributed around a mainshock rupture. We consider three
omains with different sizes and locations encompassing a broader
nd a smaller area, including the entire mainshock rupture and a
mall area focused on the tip of the mainshock rupture (Figs 2 a, d
nd g, respecti vel y). Each domain is di vided into 100 × 100 cells
f equal size. The histograms of Coulomb stress changes are shown
n Figs 2 (b), (e) and (h). 

We additionally consider three different distributions of initial
elocities. In the first case, we use the initial velocity distribution
onsistent with Dieterich’s assumption, that is eq. ( 17 ) (Fig. 2 j, blue
ine). In the second case, we consider the distribution that would
ield a uniform seismicity rate at no loading rate and in the absence
f the mainshock perturbation. This case corresponds to the setup
f our discrete fault network simulations (see Section 3 ). The initial
elocity of N th fault for this case is (Fig. 2 j, black line) 

V 

N 
i = 

Ar 

H N 

, (18) 

Eq. ( 17 ) approaches eq. (18) as τ̇ → 0. Note that this initial
elocity distribution would not result in an Omori decay for a uni-
orm stress change. Finally, we consider uniform initial velocity
 = 10 −13 m s −1 for all faults (Fig. 2 j, red line). In the absence of a
tress change, all faults would rupture simultaneously on day 7234
according to eq. 15 with A = 0.003, H = 48 m, V i = 10 −13 m s −1 

nd �σ f = 0). Therefore, the initial velocity distribution cannot
xplain the Omori decay in this case, and the effect of the spatial
eterogeneity of the stress change is the only factor in the desyn-
hronization of the ruptures. In this extreme case, the fact that the
ftershocks follow the Omori law is only due to the stress change
etero geneity, i.e. the hetero geneity of stresses resulting from fault
nteractions since the initial stress is homogeneous. 

The time to instability is calculated by randomly pairing the
tress change (Figs 2 b, e and h) and the initial velocity (Fig. 2 j).
he cumulated event count (Fig. 2 k) and seismicity rate change

Figs 2 c, f and i) are obtained by sorting the time to the instability
f each fault. Interestingly, all three cases result in an Omori decay,
ncluding the uniform initial velocity case (Fig. 2 ). The Omori law
ppears clearer (straighter line) with a slightly higher p -value in
eneral in the focused domain cases than in the broader domain
ase (Fig. 2 l). The relativ e irre gularity of the broader domain case
s due to the relati vel y sparse sampling distance and the inclusion
f the wide unperturbed area (i.e. the white area in Fig. 2 a). In
he broader domain case with constant velocity (Fig. 2 c, red line),
he seismicity rate shows a hump around day ∼4000. This time
s similar but slightly smaller than the time to instability without
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(j) (k) (l)

(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

Figure 2. (a, d, g) Coulomb stress change due to 1 m of slip on a 5-km-long strike-slip f ault. Receiver f aults orientation is assumed parallel to the mainshock 
fault (black line). (b, e, h) Histograms of Coulomb stress change on receiver faults. Receivers are assumed to be uniformly distributed (100 × 100) in the 
domain considered (a, d, g for b, e, h, respecti vel y). (c, f, i) Seismicity rate evolution for each domain considered (a, d, g for c, f, i, respecti vel y). The dif ferent 
initial velocity distributions are represented with different colours, as defined in panel (j). (j) Initial velocity distributions (b lue: eq. 17 , b lack: eq. 18 , red: 
uniform). (k) Cumulati ve e vent count for all cases calculated in this work (solid line: panel c, dashed line: panel f, dotted line: panel i, colours correspond to 
initial velocity distributions as defined in panel j). (l) Seismicity rate evolution corresponding to the black curves in panels (c), (f) and (l) (solid line: panel c, 
dashed line: panel f, dotted line: panel i). The values of the model parameters are the same as in our numerical simulations: A = 0.003, H = 48 m, r = 130 
event yr −1 (this rate × 10 compared to our other simulations due to × 10 larger size of the fault population), and τ̇= 500 Pa yr −1 . 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/235/1/831/7221651 by C

alifornia Institute of Technology user on 10 August 2023
Coulomb stress change (day 7234). In the other cases (Figs 2 f and 
i), the decay rate shows a better straight line with a power exponent 
p = 0.8–1, which is similar to the prediction of Dieterich’s model 
for a non-uniform stress change (Dieterich 1994 ). 

Clearly, the initial velocity distribution in this test does not sig- 
nificantly influence Omori law (Figs 2 f and i). The cumulative event 
count shows similar curves for each stress change case regardless of 
initial velocity (Fig. 2 k dashed and dotted lines). As noted in some 
pre vious studies (Zi v 2003 ; Ozaw a & Ando 2021 ), the specific ini- 
tial velocity distribution is not essential to obtain an Omori decay 
of aftershocks with the CRS model of earthquake triggering. The 
Omori law can emerge independently of the initial condition due to 
the heterogeneity of stress transfer, as we show here. 

3 .  S I M U L AT I O N  M E T H O D  A N D  S E T U P  

Here, we first present the numerical simulation method (Section 
3.1 ). The method is tested with a simple geometry for validation 
(Section 3.2 ). Simulations for more realistic fault network geome- 
tries are presented afterwards (Sections 3.3 and 3.4). 
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.1 Simulation method 

e consider a 2-D discrete network of faults obeying rate and state
riction. The faults could have any geometry but consider only the
imple case where all faults are parallel. We use a boundary element
ethod to simulate ruptures and faults interactions. Although still

dealized, the model is more realistic than the analytical model pre-
ented above as it accounts for the fact that stress transfers between
aults depend on their relative locations and for the finite size of the
aults system. Magnitudes are bounded by the assumed fault length
istribution. We are not trying to model how the fault geometry is
hanging over time but rather how they interact over a period short
nough that the geometry of the fault network can be considered
onstant. 

We make a quasi-static approximation to calculate stress trans-
ers. So, dynamic triggering is not considered, but note that it would
ot happen an yw ay with rate-and-state friction (Gomberg 2001 ).
he fault rupture process itself is, ho wever , simulated with account

or dynamics effects, albeit with some simplification. Inertial ef-
ects are represented using radiation damping and a lumped mass
pproximation. The radiation damping represents wave-mediated
amping dependent on slip rate (Rice 1993 ). The lumped mass ap-
roximation allows for inertial effects that would not be captured by
adiation damping alone, such as inertial vibrations (Im & Avouac
021 ). Both terms contribute to the numerical stability of the algo-
ithm. We note that these approximations are justified as this study
s primarily concerned with fault interactions and time to instabil-
ty. These processes are primarily quasi-static. The most important
upture characteristic that needs to be resolved is fault slips, which
ontrol the magnitude of the stress transfer. Hence, if the final slip
istribution is correctly estimated, the method used to approximate
he rupture process is not critical for the purpose of this work. 

Giv en the abov e approximations, the momentum balance equa-
ion at i th boundary element can be written as 

M i ̈δi = 

∑ 

j 

k τi j ( δ0 j − δ j ( t)) − μi [ σ
′ 
0 i + 

∑ 

j 

k σi j δ j ( t) ] − G 

2 β
δ̇i ( t) , 

(19) 

here M is the lumped mass per unit contact area for each element,

0 j is the initial shear slip of element j , δj is the shear slip of element
 from the initial slip ( δ0 j ), t is time, μ is friction, σ ′ 

0 i is initial
f fecti ve normal stress of element i , G is shear modulus, β is shear
ave speed and k ij is a stiffness matrix that defines the elastic stress

hange imparted on element i due to slip of element j . Here k τ and
 

σ represent shear and normal stiffness matrix, respectively. 
The left-hand side of eq. (19) is the lumped mass term. The

umped mass per unit area is, 

M = 

αρL 

(1 − ν) π 2 
, (20) 

here α is a shape factor, typically close to 1, L is the average of the
ength and width of the fault, ρ is rock density and ν is Poisson’s ra-
io. This term defines the equi v alent mass for the inertia-dominated
otion of a fault patch (Im and Avouac, 2021). On the right-hand

ide of eq. (19 ), the first term ( k τ term) and second term ( k σ

erm) define the shear stress and frictional stress (friction × normal
tress) applied to the i th fault, respecti vel y. The shear and normal
tresses change by the displacement of a fault are calculated using
he stiffness matrix k . We assume 2-D strike-slip faults so that we
re in a plane-strain situation, and use the displacement discontinu-
ty formulation (Crouch 1976 ) to calculate the stiffness matrix ( k τ

nd k σ ). The stiffness matrixes k τ ij and k σ ij define the stress change
t the centre of one fault i driven by dislocation of finite size fault j .
n the simulations, except for the simple geometry test described in
ection 3.2 , any fault longer than 1000 m is subdivided into smaller
egments. The 1000 m is much longer than the critical grid size h ∗

 2 GD c / πσ ( B - A ) (Rice 1993 ). This procedure is applied to allow
or earthquake nucleation at any part of the large fault. Finally, the
ast term in eq. (19) represents radiation damping (Rice 1993 ). 

Our method does not resolve the process zone near the tip area
e.g. Scholz et al. 1993 ). As a result, the stress change can be
nfinite near the fault tip, whereas in reality, it would be bounded
y the finite strength of the medium. Fur ther more, fault distribution
s random, so the fault density can be unreasonably high. Hence,
rrealistic strong fault interactions can result if they are too close,
hich results in numerical instability. We applied ‘too-close’ criteria

t k τ ij / k τ ii > 0.8 and k σ ij / k τ ii > 0.8. If either one of the criteria
s satisfied, the element of a shorter fault is removed from the
imulation. 

Eq. (19) is solved with rate and state friction law eqs (1 ), (2 ) or (3).
hen fault slip velocity is high, it is solved with the method of Im

t al. ( 2017 , 2021 ), which shows good numerical stability during the
upture process. The increased stability allows multiple simulations
ith randomized fault geometry with various complexity. The time

tep is adopted based on the highest slip velocity but automatically
educed when there is no convergence. 

.2. A test case with a simple set of faults 

ur modelling method is illustrated with a simple four-fault system
Fig. 3 ), including a central main fault (black line) surrounded by
maller faults (red, blue, and green lines). In the simulation, the
ain fault (black) is close to rupturing with an initial velocity of

0 −7 m s −1 , whereas other faults are further away from rupturing
ith an initial velocity of 10 −10 m s −1 . The responses of the small

aults are compared with the shear, normal, and Coulomb stress
hange calculated by the central black fault rupture displacement
ith displacement discontinuity formulation (contour of Figs 3 a, c

nd e). 
The simulations represent well the spatial correlation between the

ftershock location and Coulomb stress change in nature (King et al.
994 ; Harris 1998 ). The mainshock (black) ruptured at ∼490 s, and
he other smaller faults responded to the stress change driven by
he mainshock. Two of the small faults (blue and green) are located
n the area of Coulomb stress increase (Fig. 3 a). The simulation
esults show that the slip velocities of those faults are significantly
ncreased as a result of the main fault rupture (Fig. 3 b). The velocity
ncrease is larger for the b lue fault, w hich is located in a lobe of
 larger Coulomb stress increase than the green fault. The blue
ault ruptures almost simultaneously with the mainshock, whereas
he green fault ruptures after ∼150 s from the mainshock. These
wo ruptures are aftershocks. The velocity of the red fault, which
s located in a lobe of ne gativ e Coulomb stress change, strongly
eclines during the mainshock rupture and the rupture is therefore
elayed as expected. 

Static stress changes correspond to the simulation design, that is
he stress calculated from the displacement discontinuity method
Crouch 1976 ; Figs 3 c–f). For example, the estimated shear stress
hange for the red and green fault by the mainshock is ∼−0.3 and
+ 0.1 MP a, respectiv ely (Fig. 3 c contour), which corresponds well

o the simulation result (Fig. 3 d). The shear stress of the blue fault
apidly increases during the mainshock and then drops abruptly due
o the rupture of the fault (Fig. 3 d). The normal stress change for
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(a)

(c)

(e) (f)

(d)

(b)

Figure 3. Simulation results with four discrete faults. The 5-km-long main fault (black line) is located at the centre and is close to rupturing (initial velocity of 
10 −7 m s −1 ). The other three 1-km-long faults are far from rupturing (initial velocity 10 −10 m s −1 ). (a, c, e): Contour maps represent the Coulomb stress (a), 
shear (c) and normal stress change due to 0.67 m shear slip of the main fault calculated by the displacement discontinuity method (Crouch 1976 ). The value of 
0.67 m is the slip predicted by the simulated rupture of the main fault. (b, d, f): Predicted velocity (b), shear stress (d), and normal stress (f). The colour coding 
refers to the 4 faults in all panels. Simulation is conducted with ageing law (see slip law for Supporting Information). 
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the red, green, and blue faults are ∼+ 1, ∼−0.4 and ∼+ 0.2MPa, 
respecti vel y (Fig. 3 e contour). This result also corresponds well 
with the simulation result (Fig. 3 f). The simulation result shows 
small stress perturbation at ∼660 s driven by green fault rupture 
(e.g. normal stress change on the blue and black faults at ∼660 s in 
Fig. 3 f), indicating that all faults interact with each other with the 
moment-dependent interaction magnitude. 

We conducted an extra simulation with the slip evolution law (Fig. 
S1). The results are qualitati vel y similar to those obtained with the 
ageing law (Fig. 3 ), but the nucleation process is faster (black fault 
ruptured at 30 s). Accordingly, aftershocks rupture (green fault) 

sooner after the mainshock. 
3.3. Main simulation setup—the main fault embedded in a 
complex fault zone 

We conducted 100 simulations with a complex fault zone geometry. 
We assumed a 100 m wide and 10-km-long fault zone consisting of 
multiple faults with various lengths (Figs 4 a inset and 5 a red fault 
area). The fault zone is surrounded by an ‘off-fault’ area containing 
randomly distributed smaller faults (Fig. 5 a blue and grey faults). 
The length of individual fault is randomly selected between 50 and 
5000 m in the fault zone and between 50 and 3000 m outside of it. 
A self-similar fault length distribution (Fig. 4 b) is adopted to yield 
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(a) (b) (c)

Figure 4. Distribution of fault locations, length and initial velocity of the reference simulation. (a) Spatial distribution of fault. Each line represents a single 
fault. About 20km-long mainshock fault zone (centre) consists of multiple smaller faults (inset). (b) Fault length distribution. The set was drawn randomly 
from a probability density function to yield the Gutenberg–Richter distribution (Fig. 6 b). (c) Distribution of initial velocity. The initial velocity distribution is 
selected to yield a constant seismicity rate. 

(a) (b) (c)

(e)(d) (f)

(i)(h)(g)

Figure 5. Reference simulation result. (a) The coloured (red and blue) faults are ruptured during the simulation, whereas the grey faults are not. Red and blue 
colours represent fault-zone and off-fault-zone ruptures, respecti vel y. (b, c) Location versus time for the whole duration (b) and the day of the mainshock (c). 
Colours correspond to (a). (d) Coulomb stress change (contour) at the end of the simulation with ruptured faults (black lines). (e, f) Event magnitude versus 
time for the whole duration (b) and the day of the mainshock (c). The bold black line denotes the cumulative event count. The green dashed line in (e) denotes 
the theoretical seismicity rate with no faults interaction. Colours correspond to (a). (g, h, i) Fault slip evolution for the mainshock (red, black) and a selection 
of foreshocks (blue, green) and other faults (grey). The mainshock nucleated on the red segment of the main fault. (h, i) Velocity versus time for the whole 
duration (h) and the mainshock day (i). The key faults for the foreshock sequence are coloured. The colours correspond to (g). Some angularness of the curves 
in (i) is due to the sampling rate (see Fig. S2 for slip law result). 
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the Gutenberg–Richter law. If a fault length is longer than 1000 m, 
it is subdivided into smaller segments with a length smaller than 
1000 m. With this segmentation, the nucleation can occur on any 
subsegment of a long main fault. Selecting a lower threshold would 
be possible but would increase the computational cost. We found 
that the choice of a 1000 m element size is a reasonable compromise. 

Initially, 200 f ault-zone f aults and 800 off-f ault-zone f aults are 
generated. All faults are strike-slip faults with a 30 ̊ angle from the 
north to the east. After applying the ‘too-close’ criterion, average 
141 f ault-zone f aults remain. This criterion filters out faults mostly 
in the fault zone due to the high density of faults there. 

The initial velocity of each fault is randomly selected within 
the distribution that would generate a constant seismicity rate. All 
faults in this simulation are initially well-above-steady-state (i.e. θ i 

>> D c / V i ). Given that our simulation does not account for tectonic 
loading, the time to instability is according to eq. ( 16 ) with �σ f = 0, 

t = 

A 

H V i 
, (21) 

where A is a rate and state friction parameter and V i is the initial ve- 
locity of the fault. The time to failure is then inversely proportional 
to the initial velocity (1/ V i ). To impose constant seismicity, we ran- 
domly select the inverse of initial velocity (1/ V i ) between 0 and 3.5 
× 10 13 s m 

−1 . Considering the simulation parameters, A = 0.003 
and average H = 48 m (average k τ ii ∼ 1.8 × 10 8 , initial normal 
stress σ = 15 mPa, B = 0.006 and D c = 100 μm s −1 ), (1/ V i ) = 

3.5 × 10 13 s m 

−1 (i.e. V i ∼ 10 −13.5 m s −1 ) yields time to instability 
t = 2.19 × 10 9 s, which is the expected maximum. Since our ref- 
erence simulation contains 900 faults that yield random rupture up 
to t = 2.19 × 10 9 s, the average inter-event time is 2.43 × 10 6 s, 
yielding an expected yearly seismicity rate of ∼13.0 events yr −1 . 

We recall that the simulations presented so far do not consider 
the tectonic loading rate. The faults are, ho wever , assumed to be 
loaded by regional tectonics, but the resulting stresses are assumed 
constant over the simulation period. The assumption is that the 
stress changes from faults interaction are large compared to the 
stress change due to tectonic loading over the time we analyse 
here. To verify this assumption, we additionally conducted 100 
simulations with a tectonic loading rate which is presented in the 
Suppor ting Infor mation (Figs S3 and S4). In the simulations, initial 
velocities are randomly set based on eq. ( 17 ) (instead of eq. 18 ) 
with a tectonic loading rate of 10 kPa yr −1 , which corresponds to 
the estimated interseismic loading rate of the San Andreas fault 
(Freed et al. 2007 ). The behaviour observed in that simulation is 
not different from the behaviour observed in the simulations with 
no tectonic loading rate. 

3.4. Extra simulations—investigation of foreshock and 

aftershock mechanism 

To investigate the characteristics of foreshock and aftershock se- 
quences generated with this model, we conducted 250 additional 
simulations with different settings. First, we conducted simulations 
with varied fault zone complexity. In addition to the main simulation 
with a complex fault zone with 200 faults (Fig. 4 ), we conducted 
4 sets of 50 simulations with 1, 50, 100 and 150 faults in the fault 
zone. The total number of faults is initially 1000 in all simulations. 
For example, for the 1 fault count case, all 1000 faults are randomly 
distributed in the simulation domain, except only one long main- 
shock fault is kept at the centre of the domain. Increasing fault-zone 
fault count represents increasing fault zone complexity. Since the 
magnitude of the interaction between the faults ( � S in eq. 5 ) is dic- 
tated by fault density, this set of simulations allows us to investigate 
how foreshock acceleration changes with the interaction stress � S . 

We also conducted 50 simulations with uniform initial velocity 
(10 −13 m s −1 ) for all faults except one segment of the mainshock 
fault with a higher initial velocity (10 −7 m s −1 ). In this setup, the 
mainshock ruptures almost immediately after the beginning of the 
simulation. All the other faults will respond to the stress change 
from the mainshock. Since we set a uniform initial velocity for 
the aftershock fault, this simulation completely removes the initial 
velocity effect on the aftershock sequence. In this test, we essentially 
reproduce the uniform velocity case in Section 2.3 (red curves in 
Fig. 2 ). 

4 .  S I M U L AT I O N  R E S U LT S  

We show here that the simulations yield realistic earthquake cata- 
lo gues, including sw arms and occasional foreshock and aftershock 
sequences (Section 4.1 ). All simulation shows clear aftershock se- 
quences with an Omori law decay. Foreshocks are only apparent 
when the fault zone is complex and dense enough; the foreshock 
sequence disappears when the complexity is removed (Section 4.2 ). 
The Omori law is still observed even when the faults have a uniform 

initial velocity (Section 4.3 ). 

4.1 Main simulations—main fault embedded in a complex 
f ault z one. 

The simulations are conducted 100 times with randomly generated 
f ault length, f ault location and initial velocity within the foremen- 
tioned probability density. The simulations include a dense fault 
zone, where strong interaction is expected. We select one simulation 
as a reference simulation and investigate the result in detail (Sec- 
tion 4.1.1 ). Then three more simulations with distinct sequences 
are briefly discussed (Section 4.1.2 ). Finally, we discuss stacked 
foreshock and aftershock sequences (Section 4.1.3 ). 

4.1.1 Detailed result of a selected reference simulation 

Among the 100 simulations we conducted, we selected one reference 
simulation to investigate how foreshock and aftershock sequences 
evolve in detail (Fig. 5 ). The reference simulation e xtends ov er ∼900 
d. The mainshock (major rupture of the central fault zone) ruptured 
on day 429 (Fig. 5 e). Before the rupture, the seismicity rate was 
roughly consistent with the expected rate, given the initial velocity 
distribution, of ∼13 events yr −1 (green dashed line in Fig. 5 e). Once 
the mainshock occurs, the seismicity rate significantly increases 
(Fig. 5 e). The seismicity rate then gradually decreases with time, as 
observed during aftershock sequences in nature (Utsu et al. 1995 ). 

Aftershocks result from the time advance process illustrated 
by our simplified four-fault simulation (Fig. 3 ). The mainshock 
strongly influences the slip velocities of most faults. Once the 
mainshock ruptures, the velocities of the other faults are signif- 
icantly perturbed. The velocity distribution becomes much wider 
after the mainshock (after day 430 of Fig. 5 h velocity distribu- 
tion of grey faults becomes significantly thicker). As observed in 
our simplified simulation in Fig. 3 , this is due to the stress change 
from the mainshock. Once the mainshock occurs, Coulomb stress 
in the domain is significantly changed (Fig. 5 d). If a fault is located 
in an area of Coulomb stress increases due to the mainshock, its 
velocity is increased, and the time to instability is reduced. These 



Earthquake cascade in Discrete Fault Network 841 

t  

d  

s  

t  

c  

e
 

d  

U

n

w  

a  

T  

p  

a  

(  

a  

(  

t  

w
 

v  

f  

m  

s  

b  

a  

t  

m  

w  

w  

h  

c
 

v  

v  

t  

s  

s  

d  

a  

m  

p  

b  

r
 

F  

l  

r  

g  

m  

l  

a
 

i  

d  

c  

i  

t  

s  

M

4

W  

f  

b  

m  

m  

t  

a  

l  

d  

w
 

I  

o  

t  

A  

t  

s  

w  

t  

s  

a  

l  

f  

h  

 

h  

a  

q  

(  

H  

b  

s  

d  

a

4

O  

r  

g  

s  

o  

s  

e  

t  

(
 

i  

o  

l  

s  

s  

a  

o  

s  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/235/1/831/7221651 by C

alifornia Institute of Technology user on 10 August 2023
riggered fault ruptures are direct aftershocks, as theoretically pre-
icted by Dieterich ( 1994 ). Aftershocks also occur in the stress
hadows of the main rupture. They are the result of secondary af-
ershocks (aftershocks of previous aftershocks) and are, therefore, a
lear manifestation of the cascading process (Marsan 2005 ; Meier
t al. 2014 ). 

The temporal evolution of aftershock rate follows a power-law
ecay (Fig. 6 ) consistent with the modified Omori law (Omori 1894 ;
tsu et al. 1995 ), 

 ( t) = 

K 

( t + c) p 
, (22) 

here K , c and p are constant. The modified Omori law defines
ftershock rate ( n ) decay with po wer-la w with po wer exponent p .
he p -value of ∼0.8 (Fig. 6 a) is well within the range of typical
 -values observed in nature. For example, in California, the aver-
ge p -value is ∼1.07 and is distributed within the 0.5 ∼1.5 range
Reasenberg & Jones 1989 ). Our synthetic earthquake catalogue
lso follows the Gutenberg–Richter law with a b -value close to 1
Fig. 6 b). This result is due to the model design given the choice of
he fault length distribution (Fig. 4 b). The results are very similar
hether the ageing or slip law is used. 
A zoom-in view of the mainshock day (Figs 5 c, f and i) re-

eals three clusters in the few hours before the mainshock. These
oreshocks are located near the epicentre. In the simulation, the
ainshock rupture (black fault in Fig. 5 g) nucleated on the red

egment (Fig. 5 g inset). The rupture of the red segment is advanced
 y se veral foreshocks (b lue and green in F igs 5 g, h and i). F igs 5 (h)
nd (i) shows the velocity history of the mainshock fault and the
riggering events. The initial velocity of the red segment of the
ainshock fault was ∼ 10 −13 m s −1 (Fig. 5 h, red line). If the fault
ere isolated and unperturbed, according to eq. (16 ), the mainshock
ould have occurred on day ∼7000. It is clear that the foreshocks
ave all accelerated the slip rate on the main fault and therefore
ontributed to advancing the mainshock rupture at day 429. 

The red segment of the main fault e xperienced sev eral step-
elocity-increases before the rupture (Fig. 5 i). The most significant
elocity change (i.e. direct triggering of the mainshock) corresponds
o the clustered rupture of blue faults about 0.1 d before the main-
hock. These clustered events increased the velocity of the main-
hock (red) from 10 −11 to 10 −8 m s −1 (red line stepping at ∼429.5
 in Fig. 5 i). These blue faults, on the other hand, were advanced
t day ∼429.3 by the green fault (Fig. 5 i), which also advanced the
ainshock rupture. The cascading is thus not a simple process of

airwise causal interactions. The rupture time of a fault is affected
 y all pre vious nearb y e vents and, in turn, influences the subsequent
upture time on nearby faults. 

The triggering chain started, in fact, at a much earlier time.
ig. 5 (h) shows that the green fault was already strongly stimu-

ated ∼50 d before the mainshock. This stimulation is due to a
upture in the fault zone. Without this stimulation at day ∼390, the
reen fault would have ruptured much later, and accordingly, the
ainshock would have happened later as well. There are even ear-

ier foreshocks at day ∼200. This early foreshock stimulates blue
nd green faults ∼230 d before the rupture (Fig. 5 h). 

Although the inverse Omori law acceleration of seismicity rate
s not apparent in single sequences of foreshocks, the simulation
emonstrates that foreshocks become statistically more frequent
loser to the rupture time of the mainshock. Our analytic expression
n Section 2.2 predicts this behaviour. In Section 4.2 , we check
hat the inverse Omori law becomes apparent when simulations are
tacked, as is the case when natural sequences are stacked (Jones &
olnar 1979 ; Bouchon et al. 2013 ). 

.1.2 Distinct sequences of three selected case 

e further selected three different simulations that show distinct
oreshock and aftershock sequences. In the first case (Figs 7 a and
), a significant foreshock swarm occurs about 30 d before the
ainshock. This foreshock swarm shows clear migration patterns. It
igrates towards both + y and −y directions. The migration towards

he + y direction stops within a few days (Fig. 7 a, right-hand panel),
nd the migration towards −y direction seems to last for a much
onger duration (Fig. 7 a). The mainshock rupture occurs about 30
 after the foreshock swarm. The epicentre is located near the area
here + y migration is arrested. 
The second case shows no dominant mainshock (Figs 7 c and d).

nstead, the central fault zone is ruptured in three separated clusters
f smaller events ( M ∼ 4). The three clustered e vents clearl y migrate
owards −y direction (Fig. 7 c, right-hand panel) in ∼5-d intervals.
n early foreshock at day ∼300 is also observed in Fig. 7 (c). In-

erestingly, the aftershock sequence appears to be insignificant. The
eismicity rate rapidly returns to the original rate (13 events yr −1 )
ithin less than 100 d. These behaviours are presumabl y dri ven b y

he fault geometry. The fault zone likely consists of ill-connected
hort faults. Hence, a large rupture could not be developed, and
ccordingly, the aftershock sequence is insignificant. This simu-
ation demonstrates that swarm-like migrating clusters can result
rom cascading alone in a Discrete Fault Network model, as it can
appen in ETAS simulations as well (Helmstetter & Sornette 2002 ).

In the third case, the seismicity rate accelerates starting a few
undred days before the mainshock rupture (Fig. 7 f). A similar
cceleration of the rate of foreshocks is often observed in stacked se-
uences but is generally not apparent in a single foreshock sequence
Helmstetter et al. 2003 ; Bouchon et al. 2013 ; also see Section 3.3 ).
o wever , this specific case demonstrates gradual acceleration well
efore the mainshock rupture. Interestingly, the foreshock sequence
tops a few days before the mainshock, and the mainshock rupture
oes not have an immediate foreshock in the last few days (Figs 7 e
nd f, right-hand panel). 

.1.3 Stacked simulation results 

ut of the 100 simulations conducted, we stacked 67 simulation
esults, which have mainshock occurred at least 500 d after the be-
inning of the simulation (Fig. 8 a). Most of the individual foreshock
equences (Fig. 8 a grey and black lines) are strongly clustered with-
ut showing a gradual accelerating foreshock rate. Ho wever , once
tacked, gradual acceleration of the foreshock sequence is appar-
nt (Fig. 8 a, red line). The stacked foreshock rate is higher than
he background rate, even as early as 500 d before the mainshock
Fig. 8 , green dashed line). 

The stacked simulations follow the Omori law (eq. 21 ) and the
n verse Omori la w, n ( t ) = K ́/( t c − t ) p ´ for a p -value of the order
f 0.8 (Fig. 8 b), as seen in the reference simulation. The power-
aw exponent for the foreshocks appears to be similar to or slightly
maller than for the aftershocks (Fig. 8 b). The initial plateau of
eismicity rate at time t < c (eq. 22 ) is not visible though, implying
 value of less than a few minutes, which is under the resolution
f our simulation due to the sparse sampling rate (1 per 500 time
tep) that we apply to limit the data size. The low c -value in this
imulation is consistent with the view of Kagan & Houston ( 2005 )
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(b)(a)

Figure 6. Omori law and Gutenberg–Richter law of the reference simulation result. Black circles and blue triangles show results obtained with the ageing 
(Fig. 5 ) and slip law, respecti vel y (Fig. S2). (a) Aftershock rate with time in lo g-lo g scale. The grey line is the reference line for power exponent p = 0.8. Other 
reference power exponent slops are shown in the upper right area. (b) frequency–magnitude distribution. The plots show the cumulated number of events with 
magnitudes above the value in abscissa. The simulation follows well the Gutenberg–Richter law, with a b -value close to 1.0, as intended by choice of the fault 
length distribution (Fig. 4 b). 

(a)

(c)

(e) (f)

(d)

(b)

Figure 7. Three selected examples of distinct foreshock and aftershock sequences. Red circles denote seismic events within the mainshock fault zone, and 
blue circles denote the events outside the fault zone. (a, b) A case with a single large foreshock swarm about 30 d before the mainshock. (c, d) A case with 
migrating clusters. (e, f) A case with accelerating foreshocks. 
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(a) (c)(b)

Figure 8. (a) Cumulative seismicity with time before and after the mainshock. Grey lines denote 67 simulation results that have mainshock occurring after 500 
d. A few cases are highlighted in the black line. The bold red line denotes the stacked average. (b) Event rate versus time form mainshock for both foreshock 
(black triangle) and aftershock (blue circles). The green dashed line denotes the seismicity rate in the case of no cascading interaction. (c) Average cumulative 
ev ent v ersus magnitude plot of the ev ents shown in panel (a). Black triangle denotes foreshock, blue circles denote aftershock and grey square denotes all 
events, including the mainshock. 
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hat the c -value is likely very low in nature as well, possibly as low as
 min (Enescu et al. 2007 ). We note, ho wever , that the detection of c
n real catalogues is difficult due to coda-waves which can obscure
he detection of aftershocks early after the mainshock (Enescu et al.
007 ; Kilb et al. 2007 ). 

Stacked simulations also follow the Gutenberg–Richter law
Fig. 8 c). In general, all events shown in Fig. 8 (c) show a linear trend
n the lo g-lo g scale with a power exponent (the b -v alue) of ∼1.0
Fig. 8 c grey square). This result is not surprising, given the fractal
ength distribution (Fig. 4 b). The foreshock and aftershock trends
oth show some tapering at large magnitude due to the removal of
he mainshock (in Fig. 8 c). The tapering appears stronger in the
ftershock sequence than in the foreshock sequence. This relative
bundance of large-magnitude events in the foreshock is also im-
lied in Fig. 8 (a). Strongly clustered events (the step increases of the
rey line) are more frequently observed in the foreshock sequence
han in the aftershock (Fig. 8 a, grey lines). The Gutenberg–Richter
 value is also slightly larger in the aftershock sequence than in the
oreshock. This simulation result is reminiscent of the observation
hat the b value seems smaller for foreshocks than for aftershocks
Gulia & Wiemer 2019 ). 

.2 Fault-zone complexity and f or eshock 

e hypothesized, in Section 2 , that the foreshock result from fault
nteractions ( � S in eq. 5 ), which are controlled by the density of the
ault distribution. In this view, the high density in the fault zone in
he simulations with a complex fault zone (Fig. 4 a, inset) is likely
he cause of the observed accelerating sequences of foreshocks. To
onfirm and quantify this effect, we conducted 4 sets of 50 additional
imulations with varied fault zone complexity represented by fault
one fault count 1, 50, 100 and 150. In practice, we vary the number
f faults within the fault zone. The final counts of faults within the
ault zone after application of the ‘too close’ criterion for the four
ets are, on average, 1 (for 1 initially), 42 (for 50 initially), 78 (for
00 initially) and 108 (for 150 initially), in addition to our complex
ault simulation in the previous section 141 (for 200 initially). 

The simulation result shows no detectable foreshock accelera-
ion when fault zone complexity is removed (1 fault-zone fault
ase; Figs 9 a and b), indicating that the foreshock acceleration
n the reference simulation (Fig. 8 ) indeed results from the dense
ault distribution in the fault zone. The average seismicity before
he mainshock remains roughly at the expected seismicity rate (13
vents yr −1 , Fig. 9 b) all the way until the mainshock. The simulation
esult fits the expectation from our foreshock mechanism, indicat-
ng that the magnitude of stress interaction controls the foreshock
cceleration. 

In the case of weak interaction, aftershock still follows Omori
aw decay (Fig. 9 b), but the decay rate seems to be smaller than in
he case of a dense fault zone (compare the slope between Figs 9 b
nd 8 b), especially for the shor t-ter m ( t − t m < 1 d). This is due to
he removal of dense fault distribution of the fault zone. The fault
one faults are located in the high Coulomb stress increase area
Fig. 5 d) and, accordingly, respond immediately to the mainshock. In
he no-fault-zone simulations, those immediately responding faults
re removed, and therefore the aftershock decay rate is reduced,
articularly at the early time. This observation shows that the Omori
xponent p is also dependent on the spatial distribution of critically
tressed fault. 

The simulations with varied fault zone density further show that
he foreshock acceleration is systematically dependent on the com-
lexity of the fault zone (Fig. 10 ). The inverse Omori law exponent
ncreases with the complexity of faults from 0 to ∼0.6 (Fig. 10 e).
hose power exponents are smaller than our anal yticall y dri ven

nverse Omori law exponent 1 (F ig. 1 ), presumab ly due to the
ean-field approximation providing an incomplete quantification

f the distribution of stress interactions. Nevertheless, our simula-
ions demonstrate well that the foreshock acceleration is dictated by
aults interactions within the fault zone hosting the mainshock. 

.3 Uniform initial velocity case 

ur reference set of simulations (Fig. 8 ) shows an apparent Omori
ecay during aftershock sequences. Although we adopted some of
he assumptions that Dieterich ( 1994 ) used to derive his aftershock
odel (sources well-above-steady-state and the principle of the time

o instability calculation), there is a material difference. We imposed
nitial velocities to get a constant seismicity rate at zero loading rate
eq. 21 ). By contrast, the Dieterich model assumes initial velocities
o get constant seismicity with a non-zero loading rate. We have
een in Section 2.3 that the initial velocity distribution is actually
ot essential to obtain an Omori decay during aftershock sequences
nd argues that the influence of the initial velocities is overprinted
y the heterogeneous stress changes imparted by the sequence of
arthquakes. 
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(a)

(c) (d)

(b)

(e)

(h)(g)(f)

Figure 9. Simulation results in the case of weak fault interaction. The model setup does not include any complex fault zone. (a) Cumulative seismicity with 
time before and after the mainshock. The red line shows the fault ruptured in the mainshock, which consists of a simple linear segment with no secondary faults 
nearby. Grey lines show all 50 simulation results. Two selected cases (panels e and h) are highlighted as black lines. The bold red line is the stacked average. (b) 
Event rate versus time from mainshock for both foreshocks (black triangle) and aftershocks (blue circles). The green dashed line corresponds to the seismicity 
rate expected in the absence of interaction (no cascading). (c–h) Simulation results for the two selected cases. (c, f) Fault network geometry. The faults ruptured 
during the simulation are shown in colour (red for the mainshock and blue for the others). The grey faults are not ruptured. The fault zone consists of only one 
large fault (inset). (d, g) Event location (projected on Y -axis) versus time for all events. (e, h) Event magnitude and cumulative count for all events. 
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We have verified this hypothesis using our discrete fault network. 
We conducted 50 simulations with uniform initial velocity to all the 
faults except the main fault. We use the same fault network with 
a no-fault-zone as the one presented in Fig. 9 . We make sure that 
the mainshock rupture happens early in the simulation by assigning 
a high initial velocity (10 −7 m s −1 ) to one segment of the main- 
shock. All the other faults have uniform low initial velocities (10 
−13 m s −1 ). They would all rupture at day ∼7000 in the absence of 
the mainshock. We observed that each fault is sent on a new path to 
rupture at the time of the mainshock so that the faults are quickly 
not synchronized anymore. As a result, the Omori decay is still 
observed (Fig. 11 ). The power exponent of the stacked aftershock 
sequence is lower than in our reference model ( ∼0.5 Fig. 11 b) and 
close to that expected for the large domain case (Fig. 2 c). The rup- 
ture time of individual faults is primarily dictated by the magnitude 
of Coulomb stress change (eq. 15 ), which decreases with distance 
from the mainshock. This effect results in a notable aftershock mi- 
g ration patter n (Fig. 11 d). 
5 .  C O M PA R I S O N  T O  E TA S  M O D E L  

The swarm, foreshock and aftershock sequences observed in our 
numerical simulations can, in principle, be observed in ETAS sim- 
ulations (Helmstetter & Sornette 2002 ). We, therefore, compare 
the two types of simulation in this section. Our discrete fault net- 
work simulations and ETAS simulations are both producing earth- 
quake cascades, but there are essential differences: (i) our model is 
physics-based, whereas ETAS is statistics-based; (ii) in our model, 
any earthquake is influenced by the stress transfers from all previ- 
ous events whereas in ETAS, earthquake is triggered b y onl y one 
‘mother’ earthquake; (iii) the Omori law is explicitly embedded in 
the ETAS formulation, whereas, in our model, it naturally results 
from stress transfers and the earthquake nucleation process and (iv) 
in our model, clusters results from the time-advance of ruptures on 
a pre-existing network of faults, whereas ETAS assumes an additive 
process. In this section, we show how these differences play. 

The ETAS model (Kagan & Knopoff 1981 ; Ogata 1988 , 1998 ) is 
a statistical model designed to accommodate the empirical Omori 
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(e)

(c)(b)(a)

(d)

Figure 10. Simulation results with varied fault interaction. (a–c) The stacked foreshock and aftershock rate versus time relative to the mainshock occurrence 
time for the fault zone fault counts of ∼42 (for 50 initially), ∼78 (for 100 initially) and ∼108 (for 150 initially). See Fig. S5 for the cumulative event count. 
The foreshock results in (a)–(c) and the previous simulations (Figs 8 c and 9 b) are plotted together in panel (d) with po wer-la w fit. (e) The power exponents of 
the po wer-la w fit in panel (d). 

(a) (a)

(e)(d)(c)

Figure 11. Simulation results in the case of identical initial velocity (except for the main fault, which is assumed to have a higher initial velocity), and no 
complex fault zone. (a) Cumulative seismicity with time. Grey lines show all simulation results, and the bold red line denotes the stacked av erage. (b) Ev ent rate 
versus time from the mainshock. (c–g) Detailed simulation result of one selected case. (c) Fault geometry. The coloured faults ruptured during our simulation 
(main fault in red), whereas the grey faults are not. (d) Event location versus time for all events. (e) Event magnitude and cumulative count for all events. 
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and Gutenberg–Richter laws. We use the algorithm of Ogata ( 1988 ), 
which assumes that the seismicity results from the sum of indepen- 
dent background events and events triggered by previous events. 
The seismicity rate is then 

λ( t) = μ0 + 

∑ 

i | t i <t 

K 10 α( M i −M c ) ( t − t i + c) −(1 + φ) , (23) 

where M i is the magnitude of i th seismic event, M c is the mini- 
mum magnitude of earthquake contributing to the cascading pro- 
cess, t is time and α, K , c and φ are parameters (here φ is com- 
monly written as θ in literatures). The first term on the right- 
hand side, μ0 , is background seismicity taken as a random process. 
The summation account for the direct aftershocks of each event i . 
The term K 10 α( M i −M c ) represents magnitude-dependent aftershock 
productivity—a higher magnitude of the mother event ( M i ) gives 
higher intensity. The term ( t − t i + c) −(1 + φ) represents the ‘local’ 
Omori decay of direct aftershocks with local p = 1 + φ (Helmstet- 
ter & Sornette 2002 ). The magnitude of aftershocks is randomly 
selected based on the Gutenberg–Richter frequency distribution. 

ETAS is a branching model that can lead to rich dynamics de- 
pending on the model parameters (Helmstetter & Sornette 2002 ). 
The branching ratio can be lower than 1, leading to a subcritical 
regime, where the number of aftershocks triggered directly or indi- 
rectly from single mainshock decays to zero. It can also be larger 
than 1, leading to a supercritical regime, where an infinite number 
of earthquakes are triggered over a finite time. The branching ratio 
is determined by ETAS parameters and is al wa ys supercritical when 
φ ≤ 0 (Helmstetter & Sornette 2002 ). 

The difference between the DFN simulation result and the ETAS 

can be e v aluated b y finding the ETAS parameters that best describe 
our simulation results. To find the parameters, we conducted two 
inversions: (i) by fitting the stacked seismicity curves or (ii) by ap- 
plying the maximum likelihood estimation (MLE) method to the 
synthetic seismicity catalogues. The two methods yield consistent 
results regarding the effect of earthquake interactions on the ETAS 

parameters characterizing the productivity of earthquake trigger- 
ing ( K and α). Here we present the results obtained using the first 
method. The MLE inversion results are presented in the supplemen- 
tary material (Text S1 and Table S1). 

We conducted ETAS simulations with ‘AftSimulator.m’ (Felzer 
et al. 2002 ) with a setup designed to match our discrete fault net- 
work simulations. We set the minimum magnitude to M c = 2.5, 
the maximum magnitude to M max = 5.5, and the background seis- 
micity to μ0 = 0.0356 (13 events yr −1 ). The simulated time is 10 
yr. We selected the simulations with a maximum magnitude larger 
than M 4.0. Hence, the mainshocks in the selected simulations are 
within the range of M 4.0–5.5, which corresponds to the range of 
magnitude of the mainshock events in our discrete fault network 
simulations. We also discarded the mainshock rupture simulations 
within 500 d from the beginning or 500 d from the end of the sim- 
ulation to avoid truncating the foreshock and aftershock sequence. 
The simulation was repeated until we had 1000 mainshocks that 
met the above criteria. The cumulative seismicity of all simulations 
was stacked and averaged (Fig. 12 ). We determined the best-fitting 
parameters α, K , c and φ from trial and error. 

We initially aimed to find the parameter set fitting the evolution 
of our stacked simulations during both the foreshock and aftershock 
sequences (Fig. 12 ). Ho wever , we were unable to fit well both fore- 
shocks and aftershocks and decided to fit either one or the other. 
Fig. 12 (a) shows the ETAS model fitting the aftershocks best. In- 
dividual ETAS simulations have a wider range of cumulative event 

counts than our discrete fault network simulations. The cumulative 
event often goes well beyond 400 events (Fig. 12 a grey lines). This 
high event count cannot be reached in our discrete fault simulation 
(Fig. 8 a). Because our discrete fault simulation has a limited num- 
ber of faults, the number of critically stressed faults decreases as 
faults rupture. Although a single fault can repeatedly rupture due to 
stress transfer among faults, the seismicity rate increase is nonethe- 
less bounded due to the fact that nucleation is not instantaneous. 
The ETAS model does not have these physical limits. Therefore, 
the cumulative event number is not bounded in principle. Ho wever , 
once stacked, the ETAS simulation well matches our discrete fault 
simulation aftershock sequence (Fig. 12 a). 

The ETAS model fitting best the aftershocks [ c = 0.01, φ= 0.20 
( p = 1.2), K = 0.011] does not fit the foreshocks well. In the ETAS 

simulation, the foreshock rate starts to accelerate only 10–20 days 
before the mainshock (Fig. 12 a blue line). The discrete fault simu- 
lation shows a more pronounced and longer period of foreshock ac- 
celeration (Fig. 12 a, inset). For ETAS to fit the foreshock sequence, 
the productivity must be doub le (F ig. 12 b) so that an earthquake can 
potentially trigger about twice as many events. To compensate for 
this high productivity, we had to reduce the background seismicity 
rate by half. Ho wever , in this case, the ETAS model does not fit well 
with the aftershocks (Fig. 12 b). 

Compared to the dense fault zone case, the discrete fault simula- 
tions with no dense fault zone case (Fig. 9 ) show an opposite end- 
member behaviour. Foreshock acceleration is almost entirely absent 
(Fig. 9 b). Instead, the foreshock rate stays at the initial seismicity 
rate (13 events yr −1 ). This behaviour can be reproduced in ETAS 

simulations if low productivity ( K ) is assumed (Fig. 13 ). However, 
similarly to the complex fault zone case (Fig. 12 ), low productiv- 
ity also reduces aftershock productivity, so the ETAS simulations 
are then unable to fit the aftershocks produced in our discrete fault 
simulation (Fig. 13 a). The number of aftershocks becomes more sig- 
nificant as K increases, but foreshocks are then ill-fitted (Fig. 13 a). 

Our best-fitting ETAS model [Figs 13 b and c; φ= −0.2 ( p = 0.8), 
α = 1 and K = 0.007] has a much lower background seismicity rate 
( λ0 = 1.9 event yr −1 ) than the input rate of the discrete fault sim- 
ulation (13 event yr −1 ) because most events are due to interactions 
which do not occur in our discrete fault network simulations be- 
cause of the finite number of faults. Note that the ETAS parameter 
φ = −0.2 ( p = 0.8) implies a supercritical behaviour (Helmstetter 
& Sornette 2002 ). Therefore, it is non-physical, as the seismicity 
rate would diverge to infinity at a finite time in longer-term simu- 
lations. Within the 10-yr span of our ETAS simulations, a burst of 
aftershocks occasionally occurs, leading to a much larger increase 
in seismicity rate than observed in our simulation. This difference is 
again due to the limited number of faults involved in the generation 
of the aftershock sequence in the discrete fault simulation with a 
sparse fault network. 

The foreshock and aftershock productivity in the discrete fault 
simulations is thus significantly influenced by fault distributions in 
the main fault zone and the background area. The foreshocks are 
mostly located in the main fault zone (Fig. 5 c), whereas the after- 
shocks are widely distributed over the simulation domain, implying 
that the magnitude of earthquake interactions, which is represented 
b y the producti vity in the ETAS model, is not necessarily, or un- 
likely, equal between foreshocks and aftershocks. 

6 .  D I S C U S S I O N  

The discrete fault presented in this study is essentially a Coulomb 
Rate and State (CRS) model (e.g. Stein et al. 1997 ; Stein 1999 ; 
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(b)(a)

Figure 12. Comparison of the time evolution of seismicity obtained from our discrete fault network simulations (red line) with ETAS simulations for either the 
foreshocks (a) or the aftershocks (b) of the maximum event in the catalogue. Grey lines denote 1000 individual ETAS simulations. The bold blue line denotes 
the stacked average of the ETAS simulation. The bold red line denotes stacked discrete fault simulation with a complex fault zone (identical to Fig. 8 a red 
line). The best-fitting models correspond to μ0 = 13 event yr −1 , c = 0.0015, φ= 0.261 ( p = 1.261), K = 0.005 and α = 1 for the aftershock (a), and μ0 = 6.5 
event yr −1 , c = 0.01, φ = 0.20 ( p = 1.2), K = 0.011 and α = 1 for the foreshock (b). Insets: time versus event rate with circles denoting aftershock, triangles 
denoting foreshock, red colours denoting stacked simulation result, and blue colours denoting ETAS result. See Fig. S6 for additional fitting test results. 

(a) (b) (c)

Figure 13. Comparison of the time evolution of seismicity obtained from our discrete fault network simulations with no complex fault zone case (red line, 
identical to the red line in Fig. 9 a) with ETAS simulations (blue lines). (a) λ0 = 13 event yr −1 , φ = 0 ( p = 1.0), α = 1 and with varied K . (b) One of our 
best-fitting models to both foreshocks and aftershocks. λ0 = 1.9 event yr −1 , φ = −0.2 ( p = 0.8), α = 1 and K = 0.007. The parameter set is in the supercritical 
regime (Helmstetter & Sornette 2002 ), meaning that the number of daughter events exceeds the number of mother events. (c) Time versus event rate of the 
best fitting model (b) with circles denoting aftershock, triangles denoting foreshock, red colours denoting stacked simulation result and blue colours denoting 
ETAS result. 
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egou et al. 2013 ) with an explicitly defined network of pre-existing
aults of finite size allowing for stress interactions. Our study con-
rms previous works (Ziv 2003 ; Dieterich & Richards-Dinger 2010 ;
zawa & Ando 2021 ), which show that, just like the ETAS model

Helmstetter et al . 2003 ), a discrete network of faults governed by
ate and state friction can produce aftershocks and foreshocks as a
esult of cascades of triggered earthquakes. Our simulation method
an accommodate various fault network geometries, allowing to
nvestigate the role of fault zone complexity in the earthquake se-
uence and to compare the result with the ETAS model. 

The stacked sequence of foreshocks produced by these two dif-
erent approaches—discrete fault network and ETAS—resembles
atural e xamples. The y sho w a po wer-la w acceleration, an in verse
mori law, and a spatial migration towards the mainshock. ETAS
as therefore been used as a standard to identify foreshock se-
uences that seem inconsistent with a cascading process and might
eflect a nucleation process involving some aseismic slip (McGuire
t al. 2005 ; Bouchon et al. 2013 ). In such instances, foreshocks
ould e ventuall y provide information about the preparation for large
arthquakes (Kato & Ben-Zion 2021 ). Because geodetic data are
arel y av ailable or might not provide enough resolution, identifying
 t  
uch anomalous foreshock sequences in the seismicity catalogue is
mportant. ETAS might seem to be a good tool for this application.
his approach then assumes that the triggering process reflected in

he aftershocks sequences, which dominate seismicity catalogues
nd are represented by the ETAS algorithm, applies to foreshocks
s w ell. There are, how e ver, substantial dif ferences in the cascading
rocess modelled using ETAS or our discrete fault network model.
hese differences are due to the fact that ETAS is purely statistical
nd, therefore, not constrained to be consistent with the physics
ncorporated in our discrete fault model, as we discuss later. 

.1 Earthquake cascades in a discrete fault network and 

TAS 

oth the ETAS and discrete fault network models allow one earth-
uake to trigger another , allo wing for cascades of an earthquake to
orm. In both models, as implemented in this study, the magnitude
f a triggered earthquake is not conditioned by the magnitude of the
riggering event. This allows for foreshocks. There are, ho wever ,
aterial differences between the two models. The most fundamen-

al one is that earthquakes occur on a finite number of interacting
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faults in the discrete fault network model. Any event produces both 
positiv e and ne gativ e static stress changes on all other faults, result- 
ing in time advances or delays. In our simulations, the main fault 
typically experiences multiple stress changes before rupture (e.g. 
Figs 5 h and i). So, each earthquake is influenced by all previous 
events and is drawn from a finite pool of faults. The discrete fault 
network model implies temporal and spatial variability in the pro- 
ductivity of cascades of seismicity. The productivity is reduced after 
the mainshock rupture due to the depletion of the critically stressed 
fault (Fig. 12 ) and is larger where faults are more closely packed, 
leading to larger stress transfers. By contrast, the ETAS model is an 
unbounded additive process with a mother–daughter relationship, 
where a daughter can have only one mother. In addition, the produc- 
tivity of cascade is generally assumed constant in time and uniform 

in space. 

6.2 Producti vity differ ence between f or eshock and 

aftershock sequence 

Foreshock and aftershock have different statistical properties (e.g. 
Chen & Shearer 2013 ; Gulia & Wiemer 2019 ). Our work points 
out one possible important cause for these differences. As expected 
from our analytical mean-field approximation, the foreshocks are 
enhanced if interactions among the faults are stronger. This condi- 
tion can be met if the main fault is embedded in a complex fault 
zone with high-density faulting. Conversely, aftershock occurs ev- 
erywhere in the simulation domain, including the low-density sur- 
rounding area, where interaction is weak. As a result, the produc- 
tivity will drop temporally, leading to apparently lower productivity 
during the aftershock sequence. 

Accordingly, the ETAS model cannot reproduce our result if the 
productivity parameter is constant between the foreshock and after- 
shock (Figs 12 , 13 and S5, Text S1). Our sensitivity test and MLE in- 
version clearly show that no single set of model parameters unlikely 
can fit both. This can be reasonably explained by fault interactions in 
our discrete fault model. The ETAS productivity represents the like- 
lihood of a mother event triggering daughter e vents. Accordingl y, 
it should be higher in case of stronger interactions within a denser 
population of faults. In our simulations, the foreshocks occur within 
a higher density complex fault zone, whereas aftershock occurs all 
over a broader simulation domain with a lower density of faults 
(Figs 5 b and c). Therefore, if the fault zone is complex, high ETAS 

productivity in the foreshock is expected (Fig. 12 ), and conversely, 
if the fault zone is least complex, low ETAS productivity in the fore- 
shock is expected (Fig. 13 ). This is well presented in Fig. 10 , which 
shows that the foreshock p -value is strongly dependent on the fault 
network geometry, whereas the aftershock p -value is not. Our work 
suggests that the foreshock sequence is controlled by the various 
geometry of fault zone structures observed in natural fault systems 
(Ben Zion & Sammis 2003 ; Faulkner et al. 2010 ; Savage & Brodsky 
2011 ). 

Our work suggests that earthquake productivity should not 
be considered identical for foreshock and aftershock sequences. 
The observation of an anomalously high productivity of fore- 
shocks compared to the ETAS standard might, therefore, not nec- 
essaril y impl y that cascading should be discarded. Our simula- 
tion result suggests that the discrepancy between the observa- 
tion and the ETAS can come from the assumption of ‘constant’ 
productivity. 
6.3. Relaxing the assumption of the Dieterich ( 1994 ) 
model regarding the cause of the Omori law 

As noted in some previous studies (Ziv 2003 ; Ozawa & Ando 2021 ), 
the specific initial velocity distribution assumed by Dieterich ( 1994 ) 
is not essential to obtain aftershock sequences consistent with the 
Omori law in a discrete fault network model. In our simulations, 
the Omori law emerges due to the heterogeneous stress change dis- 
tribution imparted by previous earthquakes and is, therefore, also 
independent of the initial velocity distribution (Figs 2 and 11 ), or 
equi v alentl y independent of the initial stress distribution. In our 
simulations, the heterogeneity of stress is maintained by fault inter- 
actions. Fault interactions could also play an important role in the 
emergence of the Omori law in nature. 

6.4. Role of aseismic creep and in mechanism of 
f or eshock—cascade and pre-slip. 

Our results show that earthquake cascades in a discrete fault net- 
work produce realistic swarms, foreshock and aftershock sequences, 
but in reality, aseismic slip might be an additional mechanism of 
clustering or even a prevailing one in some cases. Our model in- 
cludes the effect of aseismic pre-slip associated with the nucleation 
process, which is theoretically predicted (Dieterich 1992 ), but this 
effect is negligible in our model as the stress changes associated 
with the nucleation phase are very small compared to the coseismic 
stress changes. Aseismic slip can also occur in the form of after- 
slip on rate-strengthening fault patches (Marone et al . 1991 ) and 
contribute to triggering aftershocks ( e .g . Perfettini & Avouac 2004 ; 
Hsu et al. 2006 ; Cattania et al. 2015 ) and swarms ( e .g . Vidale &
Shearer 2006 ; Lohmann & McGuire 2007 ; Llenos et al. 2009 ; Ross 
et al. 2017 ; Sirorattanakul et al. 2022 ). It is probable that friction 
is not homo geneous, e ven at the scale of a single fault where rate 
weakening and rate strengthening patches could intermingle (e.g. 
Bedford et al. 2022 ) and help explain the aftershocks (Perfettini & 

Av ouac 2007 ; Dub lanchet et al . 2013 ) and foreshocks (Dub lanchet 
2018 ) characteristics. In that case, aseismic slip help mediate or 
enhance earthquake interactions (Cattania & Segall 2021 ). 

It is, therefore, possible that earthquake triggering is mediated 
by aseismic slip in nature much more than our model allows due 
to fault roughness or frictional heterogeneity. Including this effect 
would probably not change the main findings of this study as it would 
essentially modify the mechanisms of fault interactions leading to 
probably a similar qualitative behaviour. We do not question that 
there are instances where aseismic pre-slip has driven foreshocks, 
swarms or foreshocks. We, ho wever , note that an abundance of fore- 
shocks, compared to expectations from ETAS, might not necessarily 
require pre-slip. 

6.5. On the role of inter e vent interactions in swarms 

Seismicity swarms are commonly interpreted to be driven by tran- 
sient loading due to aseismic slip (e.g. Vidale & Shearer 2006 ; 
Lohmann & McGuire 2007 ; Llenos et al. 2009 ; Sirorattanakul et al. 
2022 ), fluid flow (Ross et al . 2020 ; Cebry et al . 2022 ) or both (Ross
et al. 2017 ). Ho wever , our simulations demonstrate that swarm-like 
migrating clusters can result from cascading alone in a Discrete 
Fault Network model, as it can happen in ETAS simulations as well 
(Helmstetter & Sornette 2002 ). Identifying the role of stress trans- 
fers in swarms based on seismicity catalogues is a challenge as it is 
impossible to see the complete chain of interactions due to the miss- 
ing events with a magnitude lower than the magnitude of detection, 
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hich are necessarily dominant by virtue of the Gutenberg–Richter
a w. V idale & Shaerer ( 2006 ) argued that cascading plays a minor
ole in dri ving sw arms based on their observations which included:
the presence of an interval of steady seismicity rate, the tendency
f the largest event to strike later in the sequence, the large spatial
xtent of some of the swarms compared to their cumulative mo-
ent, and the weak correlation between the number of events in

ach burst and the magnitude of the largest event in each burst’.
ascading is probably not the dominant mechanism at the origin of

warms in nature, but it could play a role in addition to transient
oading or fluid flow. For example, during the Westmorland swarm,
hich w as mostl y dri ven b y a slow slip event measured from GNSS

nd SAR interferometry, it seems that 10–30 per cent of the events
ere due to earthquake interactions (Sirorattanakul et al. 2022 ). The
bservation of a swarm might, therefore, not necessarily indicate
uid flow or an aseismic transient. 

.6. Ageing law versus slip law 

e also conducted a slip evolution law simulation for the reference
imulation with identical setups. The most significant difference
etween the two simulations is that, with the slip law, the velocity
hange is much faster during the quasi-static acceleration phase and
hat the faults are more sensitive to stress change. For example, in
ur test simulations (Figs 3 and S1), the mainshock rupture (black
ault) occurs at ∼470 s for the ageing law and ∼30 s for the slip
aw. And the green fault rupture occurs ∼150 s after the mainshock
or ageing law and ∼10 s after the mainshock for slip law. The
imulation for our reference discrete fault network with the slip
aw results in a similar difference. The seismicity rate before the
ainshock is ∼13 events yr −1 for the ageing law (Fig. 5 e) and is
100 events yr −1 for the slip law (Fig. S2e). Slip law simulation

lso shows foreshocks (Fig. S2), but the foreshock sequences are
uch shorter than with the ageing law simulations. In both cases,

he foreshock sequence was triggered by a green fault (Figs 5 i and
2i). It only took ∼0.006 d ( ∼8 min) from the beginning of the

mmediate foreshock sequence to mainshock rupture for slip law
Fig. S2i), whereas it took 0.3 d ( ∼7.2 hr) for ageing law (Fig. 5 i). 

Despite the differences, the slip law simulations are qualitatively
omparable to those run with the ageing law. Both laws show multi-
le foreshocks before the mainshock. Both laws show the Omori law
ftershock decay (Fig. 6 ). Thus, at least in our simulations, it seems
hat both laws can qualitati vel y reproduce natural observation. 

.  C O N C LU S I O N  

e have used a discrete fault network and some analytical approxi-
ations to explore how interactions among faults obeying rate and

tate friction lead to earthquake cascades in the form of foreshock
nd aftershock sequences and e ventuall y sw ar ms. The for mation
f cascades results from the time advance of ruptures of a finite
umber of faults due to static stress transfer. This effect is there-
ore enhanced if the fault network is dense. Aftershock sequences in
uch a model systematically follow the Omori law due to the hetero-
eneity of Coulomb stress changes. Similarly, foreshock sequences
ollow an inverse Omori law. These results confirm observations
ade in previous studies that have adopted a discrete or inherently

iscrete modelling approach (Ziv 2003 ; Ziv & Rubin 2003 ; Ozawa
 Ando 2021 ). 
The collective dynamics emerging from fault interactions in a

iscrete fault network resemble the dynamics that can emerge from
TAS (Helmstetter & Sornette 2002 ; Helmstetter et al. 2003 ). How-
ver, the cascading process in a discrete fault network is not equiv-
lent to the cascading process in ETAS, which is additive and un-
ounded. In a discrete fault network, the topology of the network
nd the temporal depletion of critically stressed faults can enhance
oreshocks compared to the expectation based on the ETAS model
alibrated with aftershocks. This finding implies that an abundance
f foreshocks anomalously high compared to the expectation based
n ETAS, as reported in particular for large subduction earthquakes
Bouchon et al. 2013 ), may not necessarily require another mecha-
ism (i.e. pre-slip) than cascading. It can also originate from more
roductive foreshock cascades in complex fault zones, as happens in
ur simulations. Note that our model only accounts for the cascading
rocess resulting from static coseismic stress transfer and cannot be
sed to predict the occurrence time or magnitude of a large shock.
his would require exact knowledge of the fault network geometry,
roperties and initial conditions. It remains, ho wever , true that the
ignificance of cascading foreshocks, possib ly fav oured by a com-
lex fault zone with a high density of secondary faults, increases
efore a larger mainshock event. This statistical effect could be the
asis for time-dependent probabilistic earthquake forecasting. 

Pro gressi ve localization of the seismicity might precede large
arthquakes (see Kato & Ben-Zion 2021 , for re vie w). This vie w
xpands the usual notion of foreshocks in that the localization pro-
ess results from a combination of increasing seismicity around
he mainshock area and decreasing seismicity farther away. Kato &
en-Zion ( 2021 ) suggest that this observation would be due to shear

ocalization governed by the evolution of rock damage. This idea
s not explored in our study as the possible effect of rock damage
volution is not incorporated into our model. 

U P P O RT I N G  I N F O R M AT I O N  

upplementary data are available at GJI online. 

Figure S1. Identical to Fig. 3 but with slip law. 
Figure S2. Identical to Fig. 5 but with slip law. 
Figure S3. Simulation results with constant loading. The panel

escriptions are identical to Figs 5 (a)–(f) of the main text. Fault
istribution is randomly set with the identical method for the main
imulation setup (complex fault zone simulation, Section 3.3). We
sed constant shear stressing throughout the simulation period at
0 kPa yr −1 , which roughly corresponds with the interseismic load-
ng rate of the south California San Andreas fault (Freed et al. 2007 ).
nitial velocity is randomly set by equation 17 (case with loading) to
ield ∼23 events yr −1 when no interaction is assumed. Cascading
oreshock is apparent a few days before the mainshock. The result
s essentially similar to Fig. 5 , which assumed no loading. 

Figure S4. Stacked results from simulations with tectonic loading
ncluded (10 kPa yr −1 , cf . Fig. S3). We conducted 100 simulations.
mong them, 31 simulations that have the mainshock after 500 d

re selected and stacked. The simulation parameters are identical to
ig. S3 but with randomized geometry. (a) Cumulative seismicity
ith time before and after the mainshock. Grey lines denote 31

imulation results that have mainshock occurring after 500 d. Fig.
3 case is highlighted in the black line. The bold red line denotes the
tacked average. (b) Event rate versus time form mainshock for both
oreshock (black triangle) and aftershock (blue circles). The green
ashed line denotes the seismicity rate in the case of no cascading
nteraction. 

Figure S5. Cumulative seismicity with time before and after the

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad278#supplementary-data
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fault zone of 50 (a), 100 (b) and 150 (c). The remaining number of 
faults after the application of the ‘too close’ criterion is 42 (a), 78 
(b) and 108 (c). Grey lines show all simulation results, and bold red 
lines denote the stacked average. 

Figure S6. Additional attempts to fit foreshock (c, d) and af- 
tershock (a, b) sequences in our discrete fault network model with 
ETAS. This figure corresponds to Fig. 12 but with different parame- 
ters. (a) λ0 = 13 event yr −1 , c = 0.028, θ = 0.3 ( p = 1.3), K = 0.011
and α = 1. (b) λ0 = 13 event yr −1 , c = 0.015, θ = 0.3 ( p = 1.3), 
K = 0.011 and α = 0.945. (c) λ0 = 6.5 event yr −1 , c = 0.001, θ
= 0.3 ( p = 1.3), K = 0.005 and α = 1. (d) λ0 = 4.68 event yr −1 , 
c = 0.0005, θ = 0.1 ( p = 1.1), K = 0.01 and α = 0.93. 

Table S1. MLE parameter inversion result. 

Please note: Oxford University Press is not responsible for the 
content or functionality of any supporting materials supplied by 
the authors. Any queries (other than missing material) should be 
directed to the corresponding author for the paper. 
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outote , L. , Marsan, D., Lenglin é, O. & Duputel, Z., 2021. Rare occurrences
of non-cascading foreshock activity in Souther n Califor nia, Geophys. Res.
Lett., 48 (7), e2020GL091757, doi:10.1029/2020GL091757. 

ur , A. & Booker, J. R., 1972. Aftershocks caused by pore fluid flow?,
Science, 175 (4024), 885–887. 

gata , Y. , 1988. Statistical models for earthquake occurrences and residual
analysis for point processes, J. Am. Stat. Assoc., 83 (401), 9–27. 

gata , Y. , 1998. Space-time point-process models for earthquake occur-
rences, Ann. Inst. Stat. Math., 50 (2), 379–402. 

mori , F. , 1894. On the aftershocks of earthquakes, J. Coll. Sci., Imp. Univ.,
Japan, 7, 111–200. 

zawa , S. & Ando, R., 2021. Mainshock and aftershock sequence sim-
ulation in geometrically complex fault zones, J. geophys. Res, 126 (2),
e2020JB020865. 

eng , Z. & Zhao, P., 2009. Migration of early aftershocks following the 2004
Parkfield earthquake, Nat. Geosci., 2 (12), 877–881. 

erfettini , H. & Avouac, J., 2004. Postseismic relaxation driven by brittle
creep: a possible mechanism to reconcile geodetic measurements and the
decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan,
J. geophys. Res, 109 (B2), doi:10.1029/2003JB002488. 

erfettini , H. & Avouac, J., 2007. Modeling afterslip and aftershocks
following the 1992 Landers earthquak e, J. g eophys. Res, 112 (B7),
doi:10.1029/2006JB004399. 

erfettini , H. , Frank, W. B., Marsan, D. & Bouchon, M., 2018. A model
of aftershock migration dri ven b y afterslip, Geophys. Res. Lett., 45 (5),
2283–2293. 

easenberg , P. A. & Jones, L. M., 1989. Earthquake hazard after a mainshock
in California, Science, 243 (4895), 1173–1176. 

ice , J. R. , 1993. Spatio-temporal complexity of slip on a fault, J. geophys.
Res., 98 (B6), 9885–9907. 

ichards-Dinger , Keith & Dieterich, James H. 2012. RSQSim Earthquake
Simulator, Seismol. Res. Lett., 83 (6), 983–990 https://doi.org/10.1785/02
20120105 

oss , Z. E. et al. , 2019b. Hierarchical interlocked orthogonal faulting in the
2019 Ridgecrest earthquake sequence, Science, 366 (6463), 346–351. 

oss , Z. E. , Cochran, E.S., Trugman, D.T. & Smith, J.D., 2020. 3D fault
architecture controls the dynamism of ear thquake swar ms, Science, 368,
1357. 

oss , Z. E. , Rollins, C., Cochran, E. S., Hauksson, E., Avouac, J. & Ben-
Zion, Y., 2017. Aftershocks dri ven b y afterslip and fluid pressure sweeping
through a fault-fracture mesh, Geophys. Res. Lett., 44 (16), 8260–8267. 

oss , Z. E. , Trugman, D. T., Hauksson, E. & Shearer, P. M., 2019a. Searching
for hidden earthquakes in Southern California, Science, 364 (6442), 767–
771. 

uiz , S. et al. , 2014. Intense foreshocks and a slow slip event preceded the
2014 Iquique M w 8.1 earthquake, Science, 345 (6201), 1165–1169. 

avage , H. M. & Brodsky, E. E., 2011. Collateral damage: evolution with
displacement of fracture distribution and secondary fault strands in fault
damage zones, J. geophys. Res., 116 (B3), doi:10.1029/2010JB007665. 

cholz , C. H. , Dawers, N. H., Yu, J., Anders, M. H. & Cowie, P. A., 1993.
Fault growth and fault scaling laws: preliminary results, J. geophys. Res,
98 (B12), 21 951–21 961. 

e gou , M. , P arsons, T. & Ellsworth, W., 2013. Comparativ e evaluation of
physics-based and statistical forecasts in nor ther n Califor nia, J. geophys.
Res, 118 (12), 6219–6240. 

irorattanakul , K. , Ross, Z. E., Khoshmanesh, M., Cochran, E. S., Acosta,
M. & Avouac, J., 2022. The 2020 Westmorland, California earthquake
swarm as aftershocks of a slow slip event sustained by fluid flow, J.
geophys. Res, 127 (11), doi:10.1029/2022JB024693. 

tein , R. S. , 1999. The role of stress transfer in earthquake occurrence,
Nature, 402 (6762), 605–609. 

tein , R. S. , Barka, A. A. & Dieterich, J. H., 1997. Pro gressi ve failure on
the North Anatolian fault since 1939 by earthquake stress triggering,
Geophys. J. Int., 128 (3), 594–604. 

ape , C. et al. , 2018. Earthquake nucleation and fault slip complexity in the
lower crust of central Alaska, Nat. Geosci., 11 (7), 536–541. 

http://dx.doi.org/10.1190/1.1440444
http://dx.doi.org/10.1126/science.1126960
http://dx.doi.org/10.1016/j.epsl.2021.117238
http://dx.doi.org/10.1016/j.epsl.2018.08.037
http://dx.doi.org/10.1029/JB084iB07p03596
http://dx.doi.org/10.1111/j.1365-246X.2005.02772.x
http://dx.doi.org/10.1029/JB086iB04p02853
http://dx.doi.org/10.1038/s43017-020-00108-w
http://dx.doi.org/10.1126/science.1215141
http://dx.doi.org/10.1785/0120060116
http://dx.doi.org/10.1007/s00190-011-0500-0
http://dx.doi.org/10.1016/j.epsl.2009.02.011
http://dx.doi.org/10.1007/s10712-014-9285-z
http://dx.doi.org/10.1785/0120200006
http://dx.doi.org/10.1029/2019JB017874
http://dx.doi.org/10.1029/91JB00275
http://dx.doi.org/10.1146/annurev.earth.26.1.643
http://dx.doi.org/10.1111/j.1365-246X.2005.02700.x
http://dx.doi.org/10.1093/gji/ggt008
http://dx.doi.org/10.1126/science.1148783
http://dx.doi.org/10.1038/nature03377
http://dx.doi.org/10.1029/2019JB018363
http://dx.doi.org/10.1002/2013JB010385
http://dx.doi.org/10.1038/nature02251
http://dx.doi.org/10.1007/s12145-014-0146-6
http://dx.doi.org/10.1029/2020GL091757
http://dx.doi.org/10.1126/science.175.4024.885
http://dx.doi.org/10.1080/01621459.1988.10478560
http://dx.doi.org/10.1023/A:1003403601725
http://dx.doi.org/10.1016/j.jag.2013.10.001
http://dx.doi.org/10.1029/2020JB020865
http://dx.doi.org/10.1038/ngeo697
http://dx.doi.org/10.1029/JB089iB13p11517
http://dx.doi.org/10.1029/97JE03136
http://dx.doi.org/10.1002/2017GL076287
http://dx.doi.org/10.1126/science.243.4895.1173
http://dx.doi.org/10.1029/93JB00191
https://doi.org/10.1785/0220120105
http://dx.doi.org/10.1126/science.aaz0109
http://dx.doi.org/10.1126/science.abb0779
http://dx.doi.org/10.1002/2017GL074634
http://dx.doi.org/10.1126/science.aaw6888
http://dx.doi.org/10.1126/science.1256074
http://dx.doi.org/10.1111/j.1365-246X.1997.tb01215.x
http://dx.doi.org/10.1029/93JB01008
http://dx.doi.org/10.1002/2013JB010313
http://dx.doi.org/10.1029/2022JB024693
http://dx.doi.org/10.1038/45144
http://dx.doi.org/10.1111/j.1365-246X.1997.tb05321.x
http://dx.doi.org/10.1038/s41561-018-0144-2


852 K. Im and J.-P. Avouac 

 

D
ow
Trugman , D. T. & Ross, Z. E., 2019. Perv asi ve foreshock activity across 
souther n Califor nia, Geophys. Res. Lett., 46 (15), 8772–8781. 

Utsu , T. , Ogata, Y & Matsu’ura, R.S.,., 1995. The centenary of the Omori 
formula for a decay law of aftershock activity, J. Phys. Earth, 43 (1), 1–33. 

van den Ende , M. P. A. & Ampuero, J., 2020. On the statistical significance 
of foreshock sequences in Southern California, Geophys. Res. Lett., 47 (3), 
e2019GL086224, doi:10.1029/2019GL086224. 

Vidale , J. E. & Shearer, P. M., 2006. A surv e y of 71 earthquake bursts 
across souther n Califor nia: exploring the role of pore fluid pressure 
fluctuations and aseismic slip as drivers, J. geophys. Res, 111 (B5), 
doi:10.1029/2005JB004034. 
C © The Author(s) 2023. Published
Y oon , C. E. , Y oshimitsu, N., Ellsworth, W. L. & Beroza, G. C., 2019. Fore-
shocks and mainshock nucleation of the 1999 M w 7.1 Hector Mine, 
Califor nia, ear thquak e, J. g eophys. Res, 124 (2), 1569–1582. 

Ziv , A. , 2003. Foreshocks, aftershocks, and remote triggering in quasi-static 
fault models, J. geophys. Res, 108 (B10), doi:10.1029/2002JB002318. 

Ziv , A. , 2006. What controls the spatial distribution of remote after- 
shocks?, Bull. seism. Soc. Am., 96 (6), 2231–2241. 

Ziv , A. & Rubin, A. M., 2003. Implications of rate-and-state friction for 
properties of aftershock sequence: quasi-static inherently discrete simu- 
lations, J. geophys. Res, 108 (B1), doi:10.1029/2001JB001219. 
 by Oxford University Press on behalf of The Royal Astronomical Society. 

nloaded from
 https://academ

ic.oup.com
/gji/article/235/1/831/7221651 by C

alifornia Institute of Technology user on 10 August 2023

http://dx.doi.org/10.1029/2019GL083725
http://dx.doi.org/10.4294/jpe1952.43.1
http://dx.doi.org/10.1007/s00531-007-0181-3
http://dx.doi.org/10.1029/2018JB016383
http://dx.doi.org/10.1785/0120060087
http://dx.doi.org/10.1130/G31457.1

	1 INTRODUCTION
	2 INTERACTIONS IN A NETWORK OF FAULTS GOVERNED BY RATE AND STATE FRICTIONTHEORY
	3 SIMULATION METHOD AND SETUP
	4 SIMULATION RESULTS
	5 COMPARISON TO ETAS MODEL
	6 DISCUSSION
	7 CONCLUSION
	SUPPORTING INFORMATION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY
	REFERENCES

