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Abstract

Seismic wave propagation forms the basis for most aspects of seismological research, yet
solving the wave equation is a major computational burden that inhibits the progress of research.
This is exaspirated by the fact that new simulations must be performed when the velocity
structure or source location is perturbed. Here, we explore a prototype framework for learning
general solutions using a recently developed machine learning paradigm called Neural Operator.
A trained Neural Operator can compute a solution in negligible time for any velocity structure or
source location. We develop a scheme to train Neural Operators on an ensemble of simulations
performed with random velocity models and source locations. As Neural Operators are grid-free,
it is possible to evaluate solutions on higher resolution velocity models than trained on, providing
additional computational efficiency. We illustrate the method with the 2D acoustic wave equation
and demonstrate the method’s applicability to seismic tomography, using reverse mode automatic
differentiation to compute gradients of the wavefield with respect to the velocity structure. The
developed procedure is nearly an order of magnitude faster than using conventional numerical
methods for full waveform inversion.
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1 Introduction

The simulation of seismic wave propagation through Earth’s interior underlies most aspects of
seismological research, from the simulation of strong ground shaking due to large earthquakes
[Rodgers et al., 2019, Graves and Pitarka, 2016], to imaging the subsurface velocity structure [Tape
et al., 2009, Virieux and Operto, 2009, Fichtner et al., 2009, Lee et al., 2014, Gebraad et al., 2020],
to derivation of earthquake source properties [Duputel et al., 2015, Ye et al., 2016, Wang and Zhan,
2020]. The compute costs associated with these wavefield simulations are substantial, and for reasons
of computational efficiency, 1D models are often used, even when good 3D velocity models are
available. As a result, seismic wave simulations are often the limiting factor in the pace of geophysical
research.

∗These authors contributed equally to this work.
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Recently, deep learning approaches have been explored with the goal of solving various geophysical
partial differential equations [Smith et al., 2020, Moseley et al., 2020a,b, 2021]. Beyond the goal of
accelerating compute capabilities, such physics-informed neural networks may offer other advantages
such as grid-independence, low memory overhead, differentiability, and on-demand solutions. These
properties can then result in deep learning being used to solve geophysical inverse problems [Zhu
et al., 2020, Zhang and Gao, 2021, Xiao et al., 2021, Smith et al., 2021], as a wider selection of
algorithms and frameworks then are available for use, such as approximate Bayesian inference
techniques like variational inference.

One of the major challenges associated with wave propagation is that a new simulation must be
performed whenever the properties of the source or velocity structure are perturbed in some way.
This alone substantially increases the necessary compute costs, making some problems prohibitively
expensive even if they are mathematically or physically tractable. For the most part, these limitations
have been accepted as an inevitable part of seismology, although physics-informed machine learning
approaches have started to offer some pathways for moving beyond this issue. For example, Smith
et al. [2020] use a deep neural network to solve the Eikonal equation for any source-receiver pair by
taking these locations as input. This then can be exploited for hypocenter inversion by allowing for
gradients of the travel time field to be computed with respect to the source location [Smith et al.,
2021]. However, these models are relatively inefficient to train and even then, are only able to learn
approximate solution operators to the differential equations.

The aforementioned limitations may seem surprising, but result from a basic attribute of neural
networks that in fact makes them ill-suited for solving differential equations. Specifically, neural
networks are designed for learning maps between two finite dimensional spaces, while learning a
general solution operator for a differential equation requires the ability to map between two infinite
dimensional spaces (i.e. function spaces). A paradigm for learning maps between function spaces was
recently developed [Li et al., 2020b,a, 2021], and has been termed Neural Operator. The general idea
behind these models is that they have shared parameters over all possible functions describing the
initial conditions, which allows them operate on functions, even when the inputs are a numerically
discretized representation of them.

Here, we explore the potential of Neural Operators in improving seismic wave propagation and
inversion. We develop a prototype framework for training Neural Operators on the 2D acoustic
wave equation and show that this approach provides a suite of tantalizing new advantages over
conventional numerical methods for seismic wave propagation. This study provides a roadmap for
future developments of this technology and its application to seismology.

2 Preliminaries

For a given function A and a Green’s function G, let U denote the solution to a linear partial
differential equation, i.e., the solution operator,

U(x) = (LA)(x) =
∫
G(x, y)A(y)dy
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where L is the corresponding linear operator. Neural operator generalizes this formulation to the
nonlinear setting where a set of linear operators are sequentially applied to construct a general
nonlinear solution operator. In its basic form, an `-layered neural operator is constructed as
follows;

U(x) = L` (σ(L`−1 . . . σ (L1V ) . . .)) (x)

where Li is such that for any function V , we have,

(LiV )(x) =Wi(x) +

∫
Ki(x, y)V (y)dy (1)

Under this framework, Wi(x) and Ki(x, y) constitute the learnable components of the Neural
Operator and allow for a solution to be produced for any prescribed function A. In a limited sense,
Neural Operators can be viewed as generalized Green’s functions.

3 Methods

We designed a framework that applies Neural Operators to the 2D acoustic wave equation. The basic
idea for this procedure is outlined schematically in Figure 1. A specific type of Neural Operator,
called a Fourier Neural Operator [FNO; Li et al., 2021] receives a velocity model specified on an
arbitrary, possibly irregular mesh, along with the coordinates of a point source. One of the main
features of FNO is that the heavy calculations are performed in the frequency domain, which allows
the convolutions in eq. 1 to be rapidly computed. The output of the FNO is the complete wavefield
solution, which can be queried anywhere within the medium, regardless of whether the points lie on
the input mesh.

The most basic component of the FNO is a Fourier block (Fig. 1), which first transforms an input
function (V ) to the Fourier domain. In the first layer of the network, V is equal to the initial
conditions, A. Then, a kernel (Ki) is computed specifically for this function and is truncated at low
order, before performing the integration via multiplication. Finally, the result is transformed back
and a non-linear activation function is applied, which concludes the Fourier block. For this study,
the architecture of the FNO contains 4 sequential Fourier blocks and applies a ReLU activation to
the output of each (Fig. 1). We note that the truncation of the Fourier modes is performed on the
function values after lifting them to a higher dimensional space, rather than the raw input function,
so that this does not lead to compression.

We constructed a training dataset of simulations to learn from by first generating random velocity
models. We set up a 64x64 grid with 0.16 km spacing to define the velocity model. Then, we
created 5,000 random velocity models by sampling random fields having a von Karman covariance
function with the following parameters: Hurst exponent κ = 0.5, correlation length a = [ax, ay] =
[0.16km, 0.16km], and ε = 0.1, µ = 3km/s, and σ = 0.15km. Then, for each of these velocity models,
we apply a Ricker wavelet source at a random point, and solve the acoustic wave equation using
a spectral-element method [Afanasiev et al., 2019]. It should be noted that there is a source grid
used since this is a requirement of the spectral-element method. As Gaussian random fields can
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represent all continuous functions, the purpose of these steps is to create a suite of simulations that
span a range of possible conditions. We show later that they can even well-approximate strongly
discontinuous velocity models. An example velocity model and simulation is shown in Figure 1.
Applying the aforementioned procedure results in a training dataset of 5,000 data samples, each of
which is a different simulation.

Given the simulation dataset, we can proceed to train a FNO model in a supervised capacity, where
the goal is to learn a model that can reliably output a solution to the wave equation for arbitrary
input conditions. The training is performed using batch gradient descent, where the parameters
of the FNO are updated to minimize the error against the "true" spectral-element solutions. A
mean-square error loss function is used. We use a batch size of 10 simulations and train the model
for a maximum of 1000 epochs. We use all but 200 of the simulations for training, and set aside the
remainder for cross-validation of the model. The time required to train the model from scratch is
approximately 120 hours using a single NVIDIA Tesla V100 GPU.

Figure 1: Our approach applying FNO to the 2D acoustic wave equation. The FNO takes a velocity
field and source location as input and outputs the corresponding wavefield.
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4 Experiments

Initial wavefield demonstration

Figure 2 shows two example wavefields corresponding to two different velocity models, each with a
different source. The spectral element solution is shown alongside the wavefield predicted by the
FNO for the 8 different receivers (blue triangles). For these examples, the input velocity model
is 64x64. The relative L2 loss of the FNO wavefields are 0.346 and 0.430. These examples are
representative of the entire validation dataset, which has a slightly larger loss of 0.6482 relative to
the spectral element solutions.

Figure 2: Examples of two wavefield simulations from the trained FNO model.

The number of simulations needed for training

Once fully trained, the FNO can evaluate a new solution in a fraction of a second, and thus the time
to train the FNO will be the vast majority of the needed compute time. A primary concern about
the computational demands of the FNO approach is therefore the number of simulations needed for
training. Here, we examine how the number of training simulations influences the accuracy of the
solution. We create a series of tests in which the number of training simulations is varied from 800
at the fewest, to 4800 at the largest. The results are shown in Figure 3 where we show the FNO
wavefield predictions for each dataset. The performance saturates around 3800 simulations, but even
for just 800 simulations, the results are very good. We did not perform extensive hyperparameter
tuning here, so there is still the potential to improve on these results without making any changes to
the architecture or methodology.
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Figure 3: Model performance as a function of the number of training samples.

Generalization to arbitrary velocity models

The FNO was trained only on velocity models drawn from Gaussian random fields, and while this
family of functions is broad, it does not include some types of functions that exist in the Earth,
such as discontinuous functions. This naturally promotes the question of whether the FNO can still
generalize well to these cases. Figure 4 shows an example of a predicted wavefield for a velocity
model containing a constant velocity square embedded within a homogeneous medium. While the
velocity model itself is rather simple, it is actually very far removed from the characteristics of the
random fields that the FNO was trained on and represents a challenging example. We can see that
the predicted wavefield does a very good job of approximating the wavefield compared to the ground
truth. While some error is noticeable, we note that this presents several opportunities for future
improvements of the results.

Generalization to higher resolution grids

FNO can be viewed in some sense as a method for learning generalized Green’s functions valid
for arbitrary boundary conditions. Since it is intrinsically learning a mapping between function
spaces, the FNO is theoretically independent of the resolution at which the functions are discretized
(this is only a requirement for evaluation on a computer). One important advantage of this is that
a FNO can be trained on velocity models with a certain grid spacing, and then be evaluated on
velocity models with a different grid spacing at inference time. Here, we are not simply talking about
interpolating the wavefield after solving the PDE; rather, the solutions to the PDE can actually be
evaluated on a higher resolution velocity model with negligible extra compute cost. To demonstrate
this, Figure 4 shows a FNO prediction for a random velocity field with 2x higher resolution (128x128)
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Figure 4: Model generalization experiments. Left panel shows the FNO solution for a velocity model
with a homogeneous background of 3 km/s with a square 5% anomaly embedded within it. Right
panel shows the output of the FNO for an input velocity model with 2x finer resolution than trained
on. These experiments show that the model is not just memorizing the solutions, but is able to
generalize to entirely new conditions.

than the models used during training, alongside the spectral element solution. The FNO solution
closely approximates the spectral element solution.

Full waveform inversion with Neural Operators

One of the most useful applications of wavefield simulations is in inverse modeling, to image the
Earth’s interior. The adjoint-state method is an approach to efficiently compute the gradients of an
objective function with respect to parameters of interest and can be used for seismic tomography
[e.g. Tape et al., 2009, Gebraad et al., 2020]. Full waveform inversion (FWI) with adjoint-state
methods requires evaluating both a forward wavefield and an adjoint wavefield, and computing a
cross-correlation between the two, all of which are very computationally demanding. A rigorous
physical theory underlies adjoint-state methods for determining sensitivity kernels, but one of the
fundamental assumptions in this theory relates to Born approximations on the scattering regime.
Ultimately, this assumption may place frequency limitations on the structure to be resolved. Neural
Operators are differentiable by design, which enables gradient computation with reverse-mode
automatic differentiation. This allows for the gradients of the wavefield to be determined with
respect to the inputs (velocity model and source location) without making the same assumptions as
the adjoint methods, leading to improved resolution.
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Figure 5 demonstrates our FWI approach for three different scenarios. For each case, we compute
synthetic observations using the source distribution as shown (red circles), taking every point
in the 64x64 grid as a receiver. The observations are noise-free for this experiment. Then, we
perform tomography by starting with a homogeneous initial velocity model and forward propagating a
wavefield with the FNO for each source. We calculate the loss L =

∑
i

∑
j [u

obs(xi, xj)−upred(xi, xj)]2,
and compute ∇L with automatic differentiation. The velocity model is then iteratively updated
with gradient descent for 1000 iterations using the Adam optimizer [Kingma and Ba, 2014] and a
learning rate of 0.01. The first row of Fig. 5 shows the imaging result using just a single source,
while the second row shows the result for the same velocity structure but with a ring of 20 sources.
The third row is designed to demonstrate sharp discontinuous changes with a short wavelength. In
all three cases, the results are excellent and demonstrate the remarkable capabilities of FNO to learn
a general solution operator.

We note that our FWI approach does not require an adjoint wavefield to be computed, nor a
cross-correlation; the gradients can be rapidly computed with GPUs using automatic differentiation.
It is therefore substantially more efficient than adjoint methods, even after excluding the costs
of the forward simulations. For these experiment, a single source takes ∼ 50 seconds to do 1000
tomographic iterations including the costs of computing the forward model, whereas 20 sources takes
∼ 15 minutes. These numbers are using only a single NVIDIA Tesla V100 GPU. We estimate that
for these experiments, our approach is nearly a factor of 10 faster than the spectral element method
with adjoint methods.

5 Discussion

This study presents a prototype framework for applying Neural Operators to the 2D acoustic wave
equation. We anticipate that the general framework would also be suitable for the 3D elastic wave
equation with relatively little modification. Indeed the FNO method was applied successfully to the
Navier-Stokes equations [Li et al., 2021], which can be more challenging to solve than the elastic
wave equation. In our tests, we found that only a few thousand simulations were needed to train a
FNO model, and from there, required negligible time to compute a new solution. Since FNO can
be trained on lower resolution simulations and then generalize to higher resolution solutions once
trained, this results in substantially faster computations than using traditional numerical methods
at the full resolution.

One of the limitations of the approach is that the solutions are approximate, as seen in several of
the figures. However, since this is a learning-based approach, the performance can be improved in
the future by using a better model architecture, thorough tuning of hyperparameters, improving the
size of the training dataset, using a more appropriate objective function, and various other factors.
Additionally, as new developments within machine learning emerge in this area, they would be able
to be incorporated. Thus, these performance metrics should only be viewed as a starting point. For
some applications, the error may be enough of an issue and traditional numerical methods may be
preferable; however for many other situations in geophysics, a reasonably accurate solution may be
acceptable.

Among the most exciting benefits of our approach is that by training the FNO on random velocity
models, the FNO is able to produce solutions for arbitrary velocity models. This is because FNO
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Figure 5: Example of a full waveform inversion using FNO as the forward model and automatic
differentiation to compute gradients. No regularization is used for these experiments. Source locations
are indicated by red circles, whereas receivers are placed at every node of the 64x64 grid (10 km
sides).

learns a general solution operator to the PDE, and not specifically the velocity model. This means
that the model does not need to be retrained for each region. Thus, the approach offers the potential
for a single FNO model to be used by the entire seismology community for any region of a similar
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size. While the initial cost of training a FNO and performing the training simulations may be
expensive, it only needs to be done a single time for the community as a whole.
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