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S U M M A R Y
A number of recent modelling studies of induced seismicity have used the 1994 rate-and-
state friction model of Dieterich 1994 to account for the fact that earthquake nucleation is
not instantaneous. Notably, the model assumes a population of seismic sources accelerating
towards instability with a distribution of initial slip speeds such that they would produce
earthquakes steadily in the absence of any perturbation to the system. This assumption may
not be valid in typical intraplate settings where most examples of induced seismicity occur,
since these regions have low stressing rates and initially low seismic activity. The goal of
this paper is twofold. First, to derive a revised Coulomb rate-and-state model, which takes
into account that seismic sources can be initially far from instability. Second, to apply and
test this new model, called the Threshold rate-and-state model, on the induced seismicity of
the Groningen gas field in the Netherlands. Stress changes are calculated based on a model
of reservoir compaction since the onset of gas production. We next compare the seismicity
predicted by our threshold model and Dieterich’s model with the observations. The two
models yields comparable spatial distributions of earthquakes in good agreement with the
observations. We find however that the Threshold model provides a better fit to the observed
time-varying seismicity rate than Dieterich’s model, and reproduces better the onset, peak
and decline of the observed seismicity rate. We compute the maximum magnitude expected
for each model given the Gutenberg–Richter distribution and compare to the observations.
We find that the Threshold model both shows better agreement with the observed maximum
magnitude and provides result consistent with lack of observed seismicity prior to 1993. We
carry out analysis of the model fit using a Chi-squared reduced statistics and find that the
model fit is dramatically improved by smoothing the seismicity rate. We interpret this finding
as possibly suggesting an influence of source interactions, or clustering, on a long timescale
of about 3–5 yr.

Key words: Europe; Instability analysis; Earthquake hazards; Earthquake interaction, fore-
casting, and prediction; Statistical seismology; Dynamics and mechanics of faulting.

1 I N T RO D U C T I O N

Many prominent examples of anthropogenically induced seismicity
occur away from tectonically active regions in intraplate settings
where strain rates and background seismic activity is low. Two
well-known examples are the waste-water injection-induced seis-
micity in Oklahoma (Ellsworth 2013) and the extraction induced
seismicity in the Groningen gas field in the Netherlands with, re-
markably, no detected historical seismicity (Dost et al. 2017). These
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two examples, have in common that the onset of induced seismic-
ity occurred at a significant time-lag after the start of injection
or production and stress changes in the crust became significant.
In Oklahoma the onset of an anomalous seismicity rate occurred
about 13 yr after injection started (Zhai et al. 2019), but gas was
extracted for about 25 yr from the Groningen gas field before any
detected earthquake occurred (Bourne et al. 2014; Smith et al. 2019,
Fig. 1a).

In order to understand the interplay of injection or extraction
and the observed induced seismicity, a number of recent studies
have coupled mechanical models of crustal stress changes and the
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2062 E. R. Heimisson et al.

Figure 1. Groningen gas field data overview. (a) Cumulative extraction and cumulative number of events with time. Note the large lag between first detected
earthquake and the start of production. (b) Earthquakes with time along with estimated completeness threshold. In the study, we use the more conservative and
simplified thresholds, indicated in purple, to filter the catalogue. Only seismic observations in the shaded time period are used to constrain models. We make
no assumption about seismicity before 1993. (c) Subsidence map used to constrain Coulomb stress model (see Bourne & Oates 2017; Smith et al. 2019).

seismicity rate theory of Dieterich (1994, e.g. Norbeck & Rubinstein
2018; Candela et al. 2019; Zhai et al. 2019; Richter et al. 2020).
The theory of Dieterich (1994) is based on empirically derived rate-
and-state friction law (e.g. Dieterich 1979; Ruina 1983; Marone
1998). However, in the process of obtaining an attractive expression
and maintaining mathematical tractability, several assumptions are
made by Dieterich (1994) and further investigated by Heimisson &
Segall (2018). A critical assumption is sometimes referred to as the
‘no-healing limit’, or the ‘well above steady-state limit’. Dieterich
(1994) indeed assumes that some seismic sources in the system
must be well above steady state, meaning that they are accelerating
towards instability, regardless of any perturbations to the system.
He further assumes that the distribution of their initial state is such
that they would result in a steady seismicity rate for a constant
background stressing rate. If all the seismic sources are ‘healing’
with time, meaning strengthening due to the evolution of the state
variable, then the theory is not strictly valid. We refer the reader to
Appendix A for a mathematical definition of the well above steady-
state limit. Heimisson & Segall (2018) demonstrated a mitigating
effect whereby sources initially below steady state can participate
in an aftershock sequence (as if they where initially above steady
state) if the step change in stress caused by the main shock brings
the sources above steady state. However, for more gradual stress
changes this effect can not be invoked to justify the well above
steady-state limit.

Regions, such as Oklahoma and Groningen, located in a intraplate
setting with low stressing rates, where induced seismicity only man-
ifests over a decade after start of injection or extraction appear to
be in direct contradiction to the well above steady-state limit. As a
result, Zhai et al. (2019) found that in order to fit the seismicity rate
in Oklahoma they introduced a, somewhat ad hoc, ‘critical time’,
before which stress perturbations to the system are ignored. Can-
dela et al. (2019) used the Dieterich (1994) model for Groningen
and obtained an acceptable fit with observed seismicity rate. They,
however, had to the set initial conditions such that the seismicity
rate reached a constant steady-state value only in 1993. While they

acknowledge that this is probably an oversimplification, it demon-
strates again that the Dieterich (1994) model requires ad hoc modi-
fications in order to be compatible in this kind of a intraplate setting.
Such modifications are typically not needed in more active settings
(Stein 1999; Jia et al. 2020).

Laboratory studies of rocks in both Oklahoma and Groningen
would suggest that faults are capable of spontaneously developing
seismicity, even in absence of perturbations to the crust. Kolawole
et al. (2019) showed that the basement rocks, at conditions appro-
priate for seismogenic depths were rate-weakening. Hunfeld et al.
(2017) found rate-weakening behaviour in Basal Zechstein and a
Basal Zechstein and sandstone mixtures, which may affect deeper
basement faults. Rate weakening friction is necessary to develop
seismic events. The lack of seismicity would then suggest that the
stress, or the stressing rate, is not sufficient.

The idea of a stress threshold in induced seismicity has a long
history (Raleigh et al. 1976; Hsieh & Bredehoeft 1981) and recent
modelling studies have introduced various types of thresholds in
Oklahoma and Groningen to explain the delayed onset of seismic-
ity. These include critical stress and stress thresholds (Dempsey &
Suckale 2017; Dempsey & Riffault 2019), critical injection rate
(Langenbruch & Zoback 2016) and critical time (Zhai et al. 2019).

Bourne et al. (2018) proposed that the lag in seismicity at Gronin-
gen could be explained by a probabilistic Coulomb failure stress dis-
tribution and thus initially the system is generally far from failure,
but as continued stressing occurs from extraction more sources are
brought to failure. The perspective of Bourne et al. (2018), and con-
tinued work by Smith et al. (2021), contrasts that of Candela et al.
(2019) by postulating a failure stress distribution and thus a thresh-
old stress for activation, whereas Candela et al. (2019) used the
rate-and-state theory of Dieterich (1994) and thus had no threshold
stress. These two perspective imply different possible explanation
of the lag in seismicity. First, that a stress threshold is needed to
initiate failure, the second that a lag in initiation of seismicity is
caused by the time dependence of friction and that the lag could
reflect the nucleation time.
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Coulomb rate-state model for dormant faults 2063

In this paper, we resolve this problem by demonstrating the
threshold effect introduced when a population of seismic sources
obeying rate-and-state friction and initially far from instability is
considered. We apply this threshold rate-and-state model to the
Groningen data set and demonstrate that the model outperforms Di-
eterich’s (1994) model applied without ad hoc modifications. The
paper has three main parts, first we discuss the main features of
proposed model and some implications. The model derivation itself
is presented in Appendices A and B. Second, we apply the model to
the Groningen data set and compare to the original Dieterich (1994)
theory by modelling annual seismicity rates. Finally, we offer a
discussion of the broader implications of our findings.

2 T H E O RY

Here we present the new model, contrast it to the original theory by
Dieterich (1994) and discuss some implications. The mathematical
derivation is detailed in Appendices A and B.

In Appendix A, we derive an expression for the time to activation
of a seismic source, represented by a spring-slider, which is initially
well below steady state or healing with time. This initial condition
differs from that of Dieterich (1994) who assumes that each source
is initially well above steady state, and thus weakening and acceler-
ating towards instability. We find that the time, in which the source
is elevated above steady state and begins to weaken, is controlled
by a simple stress threshold criterion.

In Appendix B, we use the approach of Heimisson & Segall
(2018) to derive the seismicity rate for a population of seismic
sources that start out initially below steady state and move above
steady state with time.

Thus, in Appendix B, we arrive at the following equation:

R

r
=

exp

(
ΔS(t) − ΔSc

Aσ0

)
1

ta

∫ t

tb

exp

(
ΔS(t ′) − ΔSc

Aσ0

)
dt ′ + 1

if t ≥ tb

R

r
= 0 if t < tb (1)

where R is the seismicity rate of a population of ‘dormant’ or
‘inactive’ seismic sources at times t < tb. ΔS(t) =Δτ (t) + μΔσ (t) is
a modified Coulomb stress where the effective coefficient of friction
is μ = τ 0/σ 0 − α where τ 0 and σ 0 are the initial shear and normal
stresses respectively acting on the population at t = 0 and α is the
the Linker & Dieterich (1992) constant, which is generally between
0 and 0.25 and relates changes in normal stress to changes in the
frictional state variable (see eq. A1). ΔSc is the threshold Coulomb
stress. In Appendix A, we show that a seismic source at well-below
steady state will be moved above steady state at a threshold Coulomb
stress that is independent of the stressing history prior to reaching
the threshold. The time tb at which the threshold stress is reached,
is then given by ΔS(t = tb) = ΔSc. We thus stress that tb is fully
determined by ΔSc and not an independent parameter. A major
difference with the ‘critical time’ of Zhai et al. (2019) is that if
the stressing rate is nonuniform then tb represents a lag that should
vary in space. Finally, as in Dieterich (1994), Aσ 0 is a characteristic
stress where A is a constitutive parameter related to the direct effect.
ta = Aσ0/ṡb, where ṡb is the background Coulomb stressing rate, is
the characteristic time of aftershock decay following a step increase
of stress. Background seismicity rate r is defined as the seismicity
rate that the population would reach if elevated above the stress
threshold and continuously stressed at ṡb until ΔSc is reached. We

postulate that ΔSc could be close to a constant regionally and thus
the local onset of seismicity could indicate the stress threshold in
areas that have been less perturbed. Thus given a model for the
stresses and planned production/injection then one could estimate
the time of onset of seismicity, that is, tb. However, these ideas need
further validation.

Unlike the Dieterich (1994) theory the background rate r is not
observable prior to reaching ΔSc. By definition, if t < tb and thus the
ΔS(t) < ΔSc, then R = 0 since no seismic sources have been moved
above steady state. It is worth highlighting one assumption made in
deriving the model (see discussion following eq. A6), which is that
stress perturbations should occur on a timescale much shorter than
the time over which the seismic source heals significantly. Thus if
ṡb is very small and no other perturbations occur we cannot expect
eq. (1) to have an onset of seismicity as at the same stress threshold
compared to when large perturbations occur at shorter timescales.

Following Heimisson & Segall (2018), it is easy to show that the
corresponding Dieterich (1994) version of eq. (1) is

R

r
=

exp
(

ΔS(t)
Aσ0

)
1
ta

∫ t
0 exp

(
ΔS(t ′)

Aσ0

)
dt ′ + 1

. (2)

Comparison of eqs (1) and (2) reveals that if ΔSc = 0 and thus tb =
0 the two equations are the same. We stress that eq. (2) is mathemat-
ically equivalent, as was shown by Heimisson & Segall (2018), to
the Dieterich (1994) model when written with the Coulomb stress
approximation of Dieterich et al. (2000):

R = r

γ ṡb
, γ̇ = 1

Aσ0

[
1 − γΔṠ

]
, (3)

with γ being a seismicity state variable. Dieterich’s (1994) model is
thus a special case of eq. (1) in the limit that of no stress threshold.

In order to gain some further insight into eq. (1), we derive
Omori’s law of aftershocks in absence of post-seismic reloading. In
other words, we explore a special case of a instantaneous jump ΔS
in stress at t=0. If the ΔS > ΔSc then tb = 0. Then eq. (1) gives:

R

r
= 1

t/ta + e(ΔSc−ΔS)/Aσ0
, (4)

which we contrast to the empirical Omori–Utsu law R = a/(t + c),
where the decay rate is taken as 1/t. As was previously discussed, the
corresponding Dieterich (1994) equation is obtain by simply setting
ΔSc = 0. We thus see that the c parameter in Omori’s law depends
on ΔSc. This results in a lower initial rate of earthquakes in the after-
shocks sequence and longer time until the onset of the characteristic
1/t decays than compared to Dieterich (1994) equation.

We recognize that if ΔS = ΔSc, then R = r and thus no aftershock
sequence occurs. This is consistent with the simulations and analysis
of Heimisson & Segall (2018), which show that only seismic source
already above, or elevated above steady state by the coseismic stress
step, participate in the aftershock sequence.

3 A P P L I C AT I O N T O G RO N I N G E N

In this section, we compare the threshold rate-and-state model
(eq. 1) to the original Dieterich (1994) model (eq. 2).

3.1 Groningen: background

Gas production at the Groningen gas field, in the northeast of the
Netherlands (Fig. 1c, inset) began in 1963 with the most rapid gas
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extraction in the 1970s and a fairly steady extraction rate since 1980
(Fig. 1a). In spite of over two decades of extraction and substantial
field compaction (Bourne & Oates 2017; Smith et al. 2019), the
first detected earthquake occurred in the 1990s (Figs 1a and b).
At the time the seismic network had a magnitude of completeness
around 2.3 (Dost et al. 2017, see. Fig. 1b), and thus some seis-
micity may have gone undetected, but in 1993 the seismic network
improved greatly and the completeness magnitude was reduced to
1.5. In the following years, improvements to the seismic network
have further lowered the completeness magnitude. In the following
modelling and analysis, we make the conservative assumption that
the completeness magnitude prior to 1993 was 2.5 and 1.5 after
1993 (Fig. 1b, purple line).

The gas production has caused a substantial compaction of the
gas field, which has resulted in subsidence of nearly 0.4 m at its max-
imum (Fig. 1c), and observable seismicity depths ranging from the
reservoir caprock (Smith et al. 2020) to within the reservoir (Dost
et al. 2017; Willacy et al. 2019). Smith et al. (2019) have integrated
several different geodetic measurement techniques, used through
time to monitor the compaction of the reservoir. Using a pres-
sure depletion simulation from Nederlandse Aardolie Maatschappij
(2013), they determined the uniaxial compressibility of the reser-
voir and found it to be variable in space but pressure-independent
(constant in time). Smith et al. (2021) used the pressure variations
and spatially variable compaction of the reservoir to calculate spa-
tial and temporal variations of Coulomb stress. We use the Coulomb
stress changes from this study to compute ΔS(t) in eqs (1) and (2).
We stress that ΔS(t) is a function of easting and northing, which
we will denote by x and y respectively. However, all parameters for
the purpose of fitting, as is discussed in the following section, are
treated as spatially and temporally constant.

3.2 Methods

For model comparison, we follow strategy of Smith et al. (2021),
which is briefly outlined here. Earthquakes are placed in yearly bins
(Fig. 2, red line) following a magnitude filtering for completeness
of 1.5 (see Fig. 3).

We quantify misfit using a Gaussian log-likelihood function

log(p(m|Ro)) = −1

2

i=2016∑
i=1993

(
Ro

i −
∫

Σ

R(m, i, x, y)dxdy

)2

, (5)

where R(m, i) is the model predicted rate density in year i (eqs 1 or
2), where m is the vector of model parameters. Ro

i is the observed
rate in year i. Integration in easting, x, and northing y, is carried
over the area Σ , which is shown by the outlines of the gas field in
Fig. 1(c). In practice, the integration is done by splitting the area
up in square blocks of 0.25 km2. Then take centre Coulomb stress
in each block as constant over the area, use the time history of
the Coulomb stress at the location and compute rate density from
eq. (1) or 2 assuming that r represents background rate per unit
area. Finally, we sum all the blocks. In eq. (5) we have assumed
that the standard deviation of the observed seismicity rate is 1 event
per yr, which is why weighting each term by a variance is omitted
in eq. (5). Further, the prior probability of the model parameters is
uniform and thus only scales the likelihood function by a constant
factor as long as the priors are satisfied. The choice of data standard
deviation of 1 is justified only when the rate is estimated by sampling
a Poissonian distribution. Then Ro

i represents the sample mean of the
observed rate in each time bin. Because we estimate the seismicity
rate by binning the statistics of the observed rate is not governed

by the Poissonian distribution but by the corresponding sampling
distribution of the mean. The expectation value of the sampling
distribution is simply λ where is the λ is the expectation value of
the Poisson distribution and thus λ ≈ N, where N is the number of
events in a fixed time interval. However the variance of the sample
mean is λ/N and thus the variance is ≈1 (see Appendix C for
details). Further, we assume sufficiently many events have occurred
in each bin to invoke the central limit theorem such that we can
use a Gaussian log-likelihood function (see also Smith et al. 2021).
We acknowledge that for bins with few or no events, invoking the
central limit theorem is not appropriate. However, the Gaussian still
serves its intended purpose of quantifying the goodness of fit and
the Gaussian still offers a useful and consistent tool for the intended
purpose of this study, which is the comparison of two models. We
stress that the choice of variance model should be considered as
minimum variance model and the resulting constraints on model
parameters as of the narrowest confidence intervals that can be
reasonably obtained. We discuss and provide further justification of
this choice in Section 4.2

We use an ensemble Markov Chain Monte Carlo (MCMC) algo-
rithm (Goodman & Weare 2010; Foreman-Mackey et al. 2013) to
sample the probability distribution in eq. (5) under the constraints
of uniform model parameter priors. The uniform priors are placed
as follows. r between 6.2 × 10−7 to 2.5 × 10−3 events (yr km2)−1.
The upper limit is selected as such under that the seismicity in 1993
would correspond to background activity. The lower limit is selected
assuming that the field would produce 1 event per 1000 yr under
background conditions. Aσ 0 is selected between 0.001 and 1 MPa,
the range is selected to reflect the typical range from aftershock
studies 0.01–0.1 MPa (Hainzl et al. 2010), but with considerable
additional uncertainty since such values are constrained in very dif-
ferent tectonic settings from the Groningen gas field. ta has been
set between 0.5 and 10 000 yr. In aftershock studies this parameter
ranges from less than a year to tens of years (Dieterich 1994; Cat-
tania et al. 2014). However, much larger values have been used in
induced seismicity modelling. For example, Zhai et al. (2019) used
ta = 6600 year as their reference model for Oklahoma. We thus
choose a prior to reflect this large range of values used elsewhere.
However, we acknowledge that our yearly average treatments of
seismicity rates would likely prevent us from resolving small values
of ta and the finite time of the observation period should also prevent
resolving very large values of ta. See further discussion in the next
section.

3.3 Results

Comparison of the MCMC sampling are shown in Fig. 2 where
results using eqs (1) and 2 that is the new Threshold model and the
original Dieterich (1994) model. We have highlighted the maximum
a posteriori or MAP model in blue, which here maximizes the
likelihood function and satisfies the priors. Comparison of the data,
which has been filtered by a magnitude of completeness (see. Fig. 3),
and the MAP reveals that the threshold model shows considerably
better agreement from 1993 to 2003, where the Dieterich (1994)
model overpredicts the rate systematically. Further from 2014 to
2017, a decline in the rate is observed in the data and the threshold
model prediction, but not in the Dieterich (1994) model. The model
of Candela et al. (2019) similarly fails to match the observed decline.
Another striking difference occurs prior to 1993 and thus before
the time range used to constrain the model. The threshold model
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Coulomb rate-state model for dormant faults 2065

Figure 2. Time-series fitting to seismicity rate where (a) is the threshold model and (b) is the Dieterich model. The seismicity rate before 1993 (outside grey
box area) is not used in fitting. Red line is observed yearly rate filtered by the simplified completeness (see Figures 1, 3). Brown are plausible sampled models,
and blue line is the preferred model. Note a much earlier onset of seismicity for the Dieterich model and that the model does not capture the decrease in the
rate at the end of the time-series. We note that the drop in rate (red line) at the end of the time-series represents a further reduction in seismicity rate in the next
year of 2017. However, this is beyond the timescale of the stress model and not included in the modelled rate (e.g. blue).

suggests both later onset of seismicity and lower seismicity rate
prior to the increased network sensitivity in 1993.

While a qualitative comparison by eye strongly suggests that the
fit to the Threshold model is significantly better than the original
Dieterich (1994, see Fig. 2) it is worth testing quantitatively if
the model fit is better given that the additional degree of freedom
added by introduction of ΔSc. Since the Dieterich (1994) model
is fully nested in the new Threshold model (a limiting case where
ΔSc = 0), a simple F-test is appropriate for model comparison
(Menke 2018). Using the MAP model (Fig. 2), in both cases to
compute the residual sum of squares the F-test indicates that the
null hypothesis, which stated that the improvement in fit can be
exampled by random fluctuations, can be rejected with a p = 0.015.
This therefore suggests that the improvement in fit is very likely
significant.

The MCMC sampling provides constraints on model parame-
ters. Based on 1 million samples for both models, the following
95 per cent confidence intervals are in Table 1. We stress, as was
previously mentioned, that the confidence intervals are derived un-
der the assumption of a small data variance and no additional sources
of uncertainty and thus the parameter bounds may be smaller than
for other approaches. Nevertheless, the analysis reveals large uncer-
tainty on some parameters and the intersection of confidence bounds
for the two models implies strongly that they are in agreement.

First, we observe in Table 1 that the confidence bounds on the
background rate r of the two model, threshold and Dieterich (1994)
intersects although the MAP values are quite different. However,
the bounds on Aσ 0 for the two models do not overlap, and the
Threshold model is better fit with smaller value of Aσ 0 than the
Dieterich (1994) model. Most striking difference in the parameter
estimates is seen in ta. The threshold model does not place much
constraint on ta since the confidence interval is nearly the prior
range. Nevertheless, it is notable that small values (t � 500 yr) are
rejected and thus indicating that typical values for active tectonic
settings are not appropriate. The Dieterich (1994) model favours ta

as large as possible and the samples cluster at the prior boundary at
10 000 yr. We tested expanding the prior further but found an only
slightly improved fit. We discuss the implications of the ta estimate

Figure 3. Magnitude–frequency distribution of earthquakes within the
Groningen Gas field reported by KNMI (Koninkljjk Nederlands Meteo-
rologisch Instituut, http://www.knmi.nl/) between 1991 and 2016. N(>M) is
number of earthquakes with magnitude larger than M. The vertical dashed
blued line shows the estimated magnitude of completeness. We also show for
reference the theoretical Gutenberg–Richter laws laws obtained for the most
likely b-value (b = 1.0) and the values bounding the 95 per cent confidence
range (b = 0.88–1.12) determined by Bourne & Oates (2020).

further in Section 4.1. Finally, we obtained an value ΔSc from the
threshold model, but we highlight that if ΔSc = 0 then the Threshold
model reduces to the Dieterich (1994) model. Thus, another way
to interpret the Dieterich values in Table 1 is that they represent
the parameter estimate if ΔSc is forced to be at the lower limit of
the prior. Clearly the lower bound on acceptable ΔSc is 0.07 MPa,
which forces systematic differences in the two models and improves
the fit for the Threshold model.

All spatial constraints for the seismicity rate come from the
Coulomb stress field ΔS(t, x, y) reported by Smith et al. (2021)
and eq. (5) does not explicitly penalize models depending on local
spatial agreement such as a space–time Poissonian log-likelihood
would (Ogata 1998). Nevertheless comparing the Threshold model
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2066 E. R. Heimisson et al.

Table 1. List of MCMC sampling results rounded to two significant digits

Model Parameter
95 per cent conf.

interval MAP value Pior range unit

Threshold r 4.0 × 10−6–3.2 ×
10−4

5.0 × 10−6 6.3 × 10−7––2.5 ×
10−3

events (yr·km2)−1

Dieterich r 6.3 × 10−5–1.3 ×
10−4

1.0 × 10−4 6.3 × 10−7–2.5 ×
10−3

events (yr·km2)−1

Threshold Aσ 0 0.0046–0.040 0.006 0.001–1 MPa
Dieterich Aσ 0 0.041–0.050 0.045 0.001–1 MPa
Threshold ta 720–9800 8700 0.5–10 000 yr
Dieterich ta 9000–10 00 10 00 0.5–10 000 yr
Threshold ΔSc 0.07–0.18 0.17 0–0.5 MPa

Figure 4. Spatial distribution of events in 2017. (a) Model prediction of earthquake density by the threshold model with events plotted on top for references. (b)
Model prediction by the Dieterich model. (c) Observed density with the same resolution as the model. (d) Difference between observed density and threshold
model density.

(Fig. 4a) and Dieterich (1994) model (Fig. 4b) and the observed
rate (Fig. 4c) when the earthquake spatial distribution is filtered to
the same length-scale of 3 km, which is the minimum resolvable
length-scale in the Coulomb stress formulations. We find both the
Threshold model and Dieterich (1994) model to be in a reason-
able agreement with the spatial distribution where in both cases
the correlation of earthquake density in each block compared to
the observed slightly exceeds 0.75. However, clear deficiencies are
observed, in particular in the southeast of the gas field where the
models overpredict the seismicity rate.

To better assess if the Threshold model or the Dieterich (1994)
model are in better agreement with the lack of observed seismicity

prior to 1993, we compute the expected maximum magnitude (Van
der Elst et al. 2016):

Mmax = Mc + 1

b
log10(N ), (6)

where b is the b-value of the Gutenberg–Richter distribution, which
we have plotted and estimated for the catalogue in Fig. 3. Mc is
the magnitude of completeness, N is the total cumulative number
of events as predicted by integrating eq. (1) or (2). Comparison
of the two models to the observed maximum magnitude with time
and the simplified completeness magnitude reveals (Fig. 5) that
for typical b-values the Threshold model is consistent with the
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Figure 5. Analysis of model predicted maximum magnitude with time given a Gutenberg–Richter distribution. Grey lines are sampled probable models
realizations given a b-value on top of each column. Red is the observed maximum magnitude. Blue is the simplified completeness magnitude. (a, top row) uses
the Threshold model. Note that grey lines exceed completeness threshold about the same time as observed seismicity b (bottom row) uses the Dieterich model.
Note that the grey lines are well above the completeness threshold before any detected seismicity occurs.

lack of observed prior seismicity and shows good agreement with
the observed maximum magnitude for b-value 1 and 1.1. As seen
in Fig. 3, these values are in good agreement with the catalogue
used. However, the Dieterich (1994) model (Fig. 5b) would suggest
that magnitudes large enough to be detected should have occurred
much earlier, furthermore, the agreement with observed maximum
magnitude is poor for the explored b-values in Fig. 5.

An independent determination of the b-value when the whole
catalogue is used was found to be around 1 ± 0.12 assuming no stress
dependence of the b-value (Bourne & Oates 2020). We emphasize
that the analysis in this section is based on the assumption that the
b-value is constant in time and space, but some evidence suggests
that this may not be the case (Bourne et al. 2014; Bourne & Oates
2020).

4 D I S C U S S I O N

4.1 Parameter estimates

The most striking disparity in parameters estimates between the
Threshold model and the Dieterich (1994) models is in the char-
acteristic decay time ta. The Dieterich (1994) model estimates this
parameter to be very large and, in fact, the estimate is limited by the
prior upper range at 10 000 yr (see Table 1). The Threshold model,
on the other hand, does not place much constrain on the parameter.

The estimate of ta is critical to forecast the seismicity in response
to any change of the production rate, in particular, once production
ends. ta represents the time it takes the system to return to back-
ground seismicity rate following a stress step. Thus, a large ta means
a sustained seismic hazard for a long time. A short ta represents a
rapid decline of seismic hazard. However, it is worth noting that
in presence of deformation processes that would relax the imparted

stresses then ta would overestimate the duration of sustained seismic
hazard level.

To investigate further the differences in the two models fol-
lowing a shut-in of production, we consider a scenario where in
2017 all production ceased. We assume after shut-in the pertur-
bations in the stress field are spatially and temporally constant.
This is not rigorously the prediction for a shut-in in 2017 as
the non-uniform pressure in the reservoir at the time of shut-in
would imply be some small stress variations after shut in. It is,
however, probably a close approximation that does not require
reservoir modelling and is sufficient to illustrate how the fore-
cast differs if a threshold is introduced in the Dieterich (1994)
model.

Fig. 6 demonstrates clearly the differences in the two models.
The Threshold model shows some variability in how the seismicity
rate decays, however, most realizations cluster around the MAP
model that indicates rapid decay of the seismicity rate in the decades
following shut-in. The variability is most likely explained by the fact
that ta is not well constrained by the optimization period, but the
hypothetical scenario presented indicates that a shut-in procedure
would place considerable constraints on the ta parameter in the next
few years after shut-in.

Much less variability is observed after shut-in from Dieterich
(1994)’s model (Fig. 6b), furthermore, all realizations suggest a
substantially elevated seismicity for several decades after the shut-
in. Thus applying the Dieterich (1994) model to the Groningen data
set implies that increased seismicity rate may be observed for very
long time following a stop in production at Groningen, however,
the threshold model suggests that ta cannot be well determined with
the available data, but could be much smaller than suggested by
the application of the model of Dieterich (1994). In summary, it is
evident that if these model are used to perform a seismic hazard
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2068 E. R. Heimisson et al.

Figure 6. Seismicity rate for the Threshold model (a) and Dieterich’s (1994) model (b) after an abrupt hypothetical stop in production (shut-in) in 2017. The
two vertical lines indicate the time period used for model fitting and sampling. The Threshold model shows considerable variability following a shut-in, but
most models show a fairly rapid decay of the seismicity rate, including the favoured MAP model. However, all samples for the Dieterich (1994) model indicate
a fairly slow decay of the seismicity rate and suggest a substantially elevated seismic risks for several decades after shut-in.

analysis for various end-of-production scenarios they would render
significantly different results.

Another critical difference of the parameter estimates manifests
in that the Dieterich (1994) model represents a limiting case of the
Threshold model where the threshold ΔSc = 0. It is worth highlight-
ing that all parameters are assumed spatially constant, including ΔSc

but the stress field ΔS(t
′
, x, y) is not (Smith et al. 2021). Thus, the

threshold is reached at different times in different places. First, this
distinguishes the model from the critical time model of Zhai et al.
(2019) where the critical time represented a regional activation of
seismicity regardless of local stress state. Secondly, estimating ΔSc

may have predictive value for activation of seismicity in areas of
small stress as production or injection continues.

4.2 Unmodelled variance

For further analysing the discrepancy in model and data we compute
a χ 2

ν value, that is chi-squared reduced value, (e.g. Menke 2018)

χ 2
ν = 1

ν

i=2016∑
i=1993

(
Ro

y −
∫

Σ

R(m, i, x, y)dxdy

)2

, (7)

where ν is the degrees of freedom (ν =19 for the Threshold model, ν
=20 for the Dieterich (1994) model) and we have taken the variance
as 1 (see Appendix C for explanation). χ 2

ν value significantly larger

than 1 indicates a poor fit, or an underestimation of the variance.
χ 2

ν value significantly less than 1 indicates usually over fitting.
Thus a χ 2

ν ≈ 1 is indicative of a fit that is in agreement with the
variance.

Using the MAP model (Fig. 2) and the observed rate we obtain
χ 2

ν = 19.3 for the Threshold model and χ 2
ν = 25.3 for the Dieterich

(1994) model. Although the Threshold model performs better, the
large value of χ 2

ν indicates that the variance is severely underesti-
mated.

However, we observe that model appears to average the various
fluctuations in the observed rate with time. Thus we test computing
χ 2

ν after 3 and 5 yr running mean smoothing (Fig. 7) using the
same model as before (constrained by the red line data). We obtain
χ 2

ν = 2.77 and 1.36 for 3 and 5 yr smoothing, respectively (Fig. 7,
purple and yellow) for the Threshold model. We find χ 2

ν = 8.94 and
6.07 for 3 and 5 yr smoothing, respectively, for the Dieterich (1994)
model (not plotted). This implies a close to ideal χ 2

ν value for 5-yr
smoothing if the Threshold model is used and some improvement
for the Dieterich (1994) model although still significantly larger
than 1.

We suggest two interpretations of this result that need further
investigation. First, the averaging by a running mean may be com-
pensating for temporal earthquake–earthquake clustering occurring
on a long timescale of about 3–5 yr. This would be in agreement
with the interacting rate-and-state model of Heimisson (2019) where
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Figure 7. A modification of Fig. 2(a) where we have added 3 and 5 yr
running average smoothing of the observed rate. This reveals a remarkably
good agreement between the MAP model (dashed blue), which represents
that optimal model constrained on the data in red given the priors, and the 5
yr smooth (yellow).

interactions where not found to change the average number of events
on long timescales. This finding may also be in agreement with re-
cent results of Post et al. (2021) that suggested that about 27 per cent
of the Groningen catalogue may be earthquake–earthquake trig-
gered events. Secondly, the variance model used in this study is
reasonably justified, from an observational point of view, if the goal
is not to model short-term variations in the seismicity rate.

4.3 Poissonian log-likelihood

It is a more common practice to carry out optimization and model
comparison of seismicity rate models using a Poissonian log-
likelihood (e.g. Ogata 1998) model rather than a Gaussian log-
likelihood as has been done here. It is thus worth discussion the
rationale for our choice.

The choice of a Poissonian log-likelihood is a motivated by two
main reasons. First, that earthquake rates are count rates and thus
negative values are non-physical. Second, that studies have shown
that earthquakes are Poissonian point processes (e.g. Gardner &
Knopoff 1974). However, the latter property is contingent on re-
moving temporal clustering, or aftershocks, which cause temporal
correlation in the rate and violate the Markov property of a Poisso-
nian process. The declustering process is non-unique where differ-
ent algorithms, intended for the same purpose, can render different
results (e.g. Marsan & Lengline 2008; Mizrahi et al. 2021). Declus-
tering is particularly problematic for induced seismicity where the
external forcing imposes spatial and temporal correlation of events
superimposed on aftershock correlation. Declustering in these cases
has been found to lead to counter-intuitive decision making and re-
sults (Maurer et al. 2020).

However, the principal reason we do not use a Poissonian log-
likelihood function in this study is that the threshold model will take
a value of R = 0 before the threshold is reached. This means that
Poissonian log-likelihood function assigns exactly 0 probability to
models where an event is observed but the theoretical rate is zero
(R = 0). We tested using a Poissonian log-likelihood from Ogata
(1998) for sampling, but found this property to lead to restrictive
sampling and poor fit. Considering all the uncertainty in the stress
modelling, event locations, and the theoretical seismicity rate model
it seemed inappropriate to pick such a restrictive likelihood model
that rejects a model if a single event is found in a region where the
rate is zero. We considered resolutions such as removing data points
if this violation occurs. However, that would change the degrees of
freedom as a function of the model parameters and would render
model comparison difficult to interpret. Alternatively, a non-zero
floor seismicity rate could be imposed (e.g. Richter et al. 2020),
however, this would contradict the assumptions of the model, which
prefer to honor.

4.4 Models with time-dependent or instantaneous stress
triggering

The model we have presented assumes the earthquake nucleation
process is time-dependent and described by a spring-slider and rate-
and-state friction. However, Smith et al. (2021) explored seismicity
rate forecasting models, which assume that nucleation is instanta-
neous, dependent on a failure stress distribution, and thus do not
have an explicit time-dependence. Much like in this study Smith
et al. (2021) observed an excellent agreement with the observed
rate by using models that effectively incorporate a threshold stress.
This comparison begs the question: does the time-dependence of
friction matter when modelling the Groningen induced seismicity?

A possible explanation may be provided in Table 1 where it is
revealed that ta is not well determined by the data. By looking at
eq. (1) we note that 1/ta shows up multiplying the time-integral in
the denominator. The fact that ta is not constrained implies that the
integral is not important to constrain the fit. If this integral is ignored
then the model reduces to the instantaneous limit of the equation,
valid at early time shortly after tb:

R

r
= exp

(
ΔS(t) − ΔSc

Aσ0

)
if t ≥ tb

R

r
= 0 if t < tb, (8)

which is not explicitly time-dependent much like models explored
by Smith et al. (2021) and furthermore takes on a similar functional
form as the extreme threshold model (Bourne et al. 2018):

RET ∝ θ1
dΔS

dt
exp (θ1ΔS(t) + θ0) (9)

where RET is the extreme threshold distribution seismicity rate and
θ 0, θ 0 are statistical parameter characterizing the shape of the dis-
tribution.

We suggest that discriminating between the time-dependent fric-
tion model presented here and the instantaneous triggering models
(Smith et al. 2021) can be achieved by investigating shorter time
intervals. Groningen has seasonal fluctuations in the production rate
(Bourne et al. 2014). We expect that such short-term but large am-
plitude fluctuations will manifest differently in the model presented
here compared to the Smith et al. (2021) models. From a physi-
cal point of view; an ongoing nucleation can be modulated by the
stress fluctuation. From a mathematical point of view; significant
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differences are expected since in the Smith et al. (2021) models the
seismicity rate scales with stressing rate as in eq. (9), which can be-
come negative and thus needs imposing a non-negativity or a Kaiser
effect, to avoid non-physical effects. Such modifications necessarily
introduce non-uniqueness dependent on the users’ implementation.
However, in the Dieterich (1994) class of models there is no explicit
dependence of seismicity rate on the time derivative of stress. Thus
the model maintains validity even for negative stressing rates or non-
differentiable stressing histories. In conclusion, we suggest that for
Groningen and by investigating yearly seismicity rate that we cannot
discriminate between models that assume time-dependent friction
and time-independent friction.

5 C O N C LU S I O N S

We have presented a new Coulomb rate-and-state model (eq. 1)
that assumes sources can initially be well below steady state. The
derivation of the model (Appendices A and B) shows that a simple
stress threshold ΔSc is needed, regardless of stressing history, to
bring the seismic source above steady state. We have compared
the new Threshold model to the original Dieterich (1994) model
using the data from the Groningen gas field in the Netherlands.
We obtain much improved agreement using the Threshold model in
terms of time-series fitting to the observed seismicity rate and better
agreement with the observed maximum magnitude with time. The
two model provide similar agreement in terms of spatial distribution
of events.
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A P P E N D I X A : T I M E T O A C T I VAT I O N :
S I N G L E S O U RC E

We start by describing a single seismic source, idealized as a spring
and slider system and investigate the state evaluation equation (Di-
eterich 1979; Ruina 1983),

θ̇ = 1 − δ̇θ

dc
= 1 − Ω (A1)

If Ω � 1, the source is accelerating towards instability (active
and well above steady state), if Ω 	 1 the source is in healing
phase (inactive and well below steady state). If Ω = 1 the source is
at steady state (θ̇ = 0). We start by assuming that the seismic source
is at time t = 0 well below steady state. We shall refer to a seismic
source that is well below steady state as inactive. Here, we shall see
that if all seismic sources in a population are inactive there will be
no seismicity produced until we reach a certain stress where they
become active.

Assuming Ω 	 1, then

θ = θ0 + t. (A2)

The rate-and-state friction law and force balance becomes (fol-
lowing notations of Heimisson & Segall 2018)

τ (t) − kδ(t) = σ (t)

(
μ + A log

δ̇(t)

V ∗ + B log
(θ0 + t)V ∗

dc

)
(A3)

Rearranging provides:

K (t)

(
θ0

θ0 + t

)(B/A)

= δ̇

δ̇0

exp

(
kδ

Aσ (t)

)
(A4)

where

K (t) = exp

(
τ (t)

Aσ (t)
− τ0

Aσ0

)
≈ exp

(
ΔS(t)

Aσ0

)
(A5)

where the approximation is the Coulomb stress approximation dis-
cussed in detail by Heimisson & Segall (2018). The initial slip
speed can be found from eq. (A3), by introducing the initial values
for all field: δ̇0 = V ∗ exp(τ0/Aσ0 − μ/A)(V ∗θ0/dc)−B/A. We have
introduced the initial slip speed into eq. (A4) for compactness and
clarity. In other words, ΔS(t) = τ (t) − μσ (t) represents modified
Coulomb stress, with μ = τ 0/σ 0 − α. τ 0 and σ 0 are the initial
background shear and effective normal stress respectively, and α is
the Linker–Dieterich constant (Linker & Dieterich 1992).

If a seismic source is well below steady state it will slip a very
small distance until it will be perturbed sufficiently to go above
steady state. We thus assume in eq. (A4) that kδ/Aσ 0 	 1 and thus:

δ̇

δ̇0

= K (t)

(
θ0

θ0 + t

)(B/A)

(A6)

If the seismic sources have been healing for much longer time
than they are perturbed then θ 0 � t. This is likely always true
for seismically inactive faults that have been healing for geolog-
ical timescales, but are perturbed on the timescale of months to
years. But we emphasize that the threshold model requires that
the timescale of the stress perturbations is short compared to the
timescale over which healing occurs. Thus:

δ̇

δ̇0

= K (t) (A7)

Now let us assume that a source actives at Ωc � 1, but Ωc = 1 is
exactly steady state. Then we find a critical stress perturbation ΔSc
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(using the Coulomb stress approximation).

ΔSc

Aσ0
= log

(
Ωc

Ω0

)
(A8)

By virtue of the slow growth of the logarithm we may infer
from eq. (A8) that perturbations of the order of Aσ 0 are universally
needed to activate the population. Once the threshold is achieved the
assumption of well above steady state is justified and the Dieterich
theory can be applied. Then, the time tb at which the seismic source
is activated is the solution of the following equation:

ΔS(t = tb) = ΔSc = Aσ0 log

(
Ωc

Ω0

)
, (A9)

where we infer that the critical stress ΔSc will typically be in the
range of 1–10 Aσ 0. In practical applications either ΔSc or tb needs
to be determined. This estimations may be done through an inver-
sion process, but it is worth noting that typically tb can considered
an observable, at least up to reasonable certainty. It would then
represent the time since injection, extraction, or other perturbations
started until the time that seismic activity begins. However, if the
stress perturbation in space is heterogeneous then tb will also likely
vary in space. Through a stress model and an estimation of Aσ 0

one can relate tb to ΔSc, which may not vary strongly in space due
to logarithmic dependence on Ωc/Ω0 and could potentially have
a predictive value for the onset of seismicity in other regions. It
may, therefore, be more straightforward to directly invert for ΔSc,
assuming that it is spatially uniform, instead of estimating tb.

A P P E N D I X B : N E W C O N S T I T U T I V E
L AW: A T H R E S H O L D M O D E L

In the previous section, we derived a stress threshold ΔSc at which a
seismic source can be considered active or above steady state. Now
we assume that once we reach ΔSc the whole population of seismic
sources is moved above steady state, in other word, all sources
become active. This assumptions is likely reasonable as long as the
variability of ΔSc in the populations of seismic sources is less than
Aσ 0. Further, for the sake of mathematical tractability, we assume
the sources cannot be moved below steady state once it is well above
steady state or activated.

By assuming that the seismic sources under arbitrary stressing
conditions are activated at time t = tb and for background conditions
at to

b then eq. (17) in Heimisson & Segall (2018) can be rewritten in
the following manner:∫ t

tb

K (t ′)dt ′ =
∫ to

b +N/r

to
b

et ′/ta dt ′, (B1)

where tb is a constant and represents the time when ΔS(t = tb) =
Aσ0 log( Ωc

Ω0
), to

b = ta log( Ωc
Ω0

) = taΔSc/(Aσ0). Thus implementing
the Coulomb stress approximation, which will be used to replace
K(t) hereafter, we find:∫ t

tb

exp

(
ΔS(t ′)

Aσ0

)
dt ′ = ta

Ωc

Ω0

(
eN/r ta − 1

)
. (B2)

Solving for N gives

N

r
= ta log

(
1

ta
Ωc
Ω0

∫ t

tb

exp

(
ΔS(t ′)

Aσ0

)
dt ′ + 1

)
, (B3)

or alternatively

N

r
= ta log

(
1

ta

∫ t

tb

exp

(
ΔS(t ′) − ΔSc

Aσ0

)
dt ′ + 1

)
, (B4)

Comparison to eq. (18) in Heimisson & Segall (2018) and eq.
(B4) reveals that the theory proposed here reduced to the Dieterich
(1994) theory in the limit when the threshold stress ΔSc = 0, as
should be expected. Were we note that N = 0 it t < tb. Seismicity
rate R is found by differentiation:

R

r
= K (t)(

1
ta

∫ t
tb

K (t ′)dt ′ + Ωc
Ω0

) (B5)

or alternatively

R

r
=

exp
(

ΔS(t)−ΔSc
Aσ0

)
1
ta

∫ t
tb

exp
(

ΔS(t ′)−ΔSc
Aσ0

)
dt ′ + 1

, (B6)

which is eq.(1) in the main text.

A P P E N D I X C : D E R I VAT I O N O F
S E I S M I C I T Y- R AT E VA R I A N C E

Here we derive the simple variance model that is used in the study
to characterize the uncertainty in the binned seismicity rate.

First we note the Poissonian probability distribution

P(X = xi ) = e−λλxi

xi !
, (C1)

where λ is the expected value of X, which we interpret in this study
as the number of events in some time interval, and also the variance
of X.

The distribution of n samples from the distribution is also a Pois-
son distribution of random variable Y = ∑n

i=1 xi with the expected
value of nλ (e.g. Hogg et al. 2019, theorem 3.2.1) thus

P(Y =
n∑

i=1

xi ) = e−nλ(nλ)
∑n

i=1 xi

(
∑n

i=1 xi )!
. (C2)

where
∑n

i=1 xi = 0, 1, 2, . . .. The distribution of the sample mean
X̄ can be obtained by substitution

∑n
i=1 xi = n X̄

P(X̄ = x̄) = e−nλ(nλ)nx̄

(nx̄)!
, (C3)

where x̄ ∈ {0, 1/n, 2/n, . . .} or alternatively x̄ = j/n, where j ∈ {0,
1, 2, . . . }. We can thus compute the expected value of the sample
mean distribution:

〈X̄〉 =
∞∑
j=0

j

n

e−nλ(nλ) j

j!
= λ. (C4)

This is not unexpected since the mean of the sample mean distribu-
tion must also be the mean of the distribution that is being sampled.
However, the same is not true for the variance.

Var(X̄ ) =
∞∑
j=0

(
j

n
− λ

)2 e−nλ(nλ) j

j!
= λ

n
. (C5)

The variance of the sample mean represents the number of events
observed in a particular bin and we will also call n as we keep in
mind that the observed number of events is the same number as the
number of samples. Thus, we see that the variance is reduced the
more samples are available as is expected.

In our case we estimate the characteristic rate R as the number of
events n divided by the bin length, or R = N/Δt. Thus, the variance
of the rate is Var(R) = Var(X̄ )/Δt2 = λ/(nΔt2). Eq. (C4) shows
that we can approximate λ ≈ n. We then finally find Var(R) = 1/Δt2

and the standard deviation thus 1/Δt. In this study, we have picked
Δt = 1 yr, and thus the estimate of the variance is simply 1.
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